IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v70y2014icp181-193.html
   My bibliography  Save this item

Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  2. Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.
  3. Elena R. Magaril & Leonid D. Gitelman & Anzhelika P. Karaeva & Andrey V. Kiselev & Mikhail V. Kozhevnikov, 2022. "Methodological Approach to the Environmental and Economic Assessment of Biogas Energy Projects," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 21(2), pages 217-256.
  4. Lijó, Lucía & González-García, Sara & Bacenetti, Jacopo & Moreira, Maria Teresa, 2017. "The environmental effect of substituting energy crops for food waste as feedstock for biogas production," Energy, Elsevier, vol. 137(C), pages 1130-1143.
  5. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
  6. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
  7. Bahlawan, Hilal & Morini, Mirko & Pinelli, Michele & Poganietz, Witold-Roger & Spina, Pier Ruggero & Venturini, Mauro, 2019. "Optimization of a hybrid energy plant by integrating the cumulative energy demand," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  8. Dahlin, Johannes & Nelles, Michael & Herbes, Carsten, 2017. "Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 27-38.
  9. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
  10. Soam, Shveta & Kumar, Ravindra & Gupta, Ravi P. & Sharma, Pankaj K. & Tuli, Deepak K. & Das, Biswapriya, 2015. "Life cycle assessment of fuel ethanol from sugarcane molasses in northern and western India and its impact on Indian biofuel programme," Energy, Elsevier, vol. 83(C), pages 307-315.
  11. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
  12. Abdulhalim Abdulrazik & Roziah Zailan & Marwen Elkamel & Ali Elkamel, 2022. "Multi-Product Productions from Malaysian Oil Palm Empty Fruit Bunch (EFB): Selection for Optimal Process and Transportation Mode," Resources, MDPI, vol. 11(7), pages 1-31, July.
  13. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
  14. Maria Anna Cusenza & Maurizio Cellura & Francesco Guarino & Sonia Longo, 2021. "Life Cycle Environmental Assessment of Energy Valorization of the Residual Agro-Food Industry," Energies, MDPI, vol. 14(17), pages 1-16, September.
  15. Gianluca Caposciutti & Andrea Baccioli & Lorenzo Ferrari & Umberto Desideri, 2020. "Biogas from Anaerobic Digestion: Power Generation or Biomethane Production?," Energies, MDPI, vol. 13(3), pages 1-15, February.
  16. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
  17. Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
  18. Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
  19. Zhao, Ning & You, Fengqi, 2019. "Dairy waste-to-energy incentive policy design using Stackelberg-game-based modeling and optimization," Applied Energy, Elsevier, vol. 254(C).
  20. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
  21. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
  22. Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
  23. Eleanor Eaton & Alistair Hunt & Anastasia Di Leo & Daniel Black & Gwen Frost & Sarah Hargreaves, 2022. "What Are the Environmental Benefits and Costs of Reducing Food Waste? Bristol as a Case Study in the WASTE FEW Urban Living Lab Project," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
  24. Zanxin Wang & Saqib Ali & Ahsan Akbar & Farhan Rasool, 2020. "Determining the Influencing Factors of Biogas Technology Adoption Intention in Pakistan: The Moderating Role of Social Media," IJERPH, MDPI, vol. 17(7), pages 1-20, March.
  25. Tappen, S.J. & Aschmann, V. & Effenberger, M., 2017. "Lifetime development and load response of the electrical efficiency of biogas-driven cogeneration units," Renewable Energy, Elsevier, vol. 114(PB), pages 857-865.
  26. Ingrao, Carlo & Rana, Roberto & Tricase, Caterina & Lombardi, Mariarosaria, 2015. "Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy," Applied Energy, Elsevier, vol. 149(C), pages 75-88.
  27. Shuijing Wang & Chenming Xu & Liyan Song & Jin Zhang, 2022. "Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
  28. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
  29. Sergi Vinardell & Gaetan Blandin & Federico Ferrari & Geoffroy Lesage & Joan Mata-Alvarez & Joan Dosta & Sergi Astals, 2022. "Techno-economic analysis of forward osmosis pre-concentration before an anaerobic membrane bioreactor: Impact of draw solute and membrane material," Post-Print hal-03709623, HAL.
  30. Ervin Saracevic & Daniel Koch & Bernhard Stuermer & Bettina Mihalyi & Angela Miltner & Anton Friedl, 2019. "Economic and Global Warming Potential Assessment of Flexible Power Generation with Biogas Plants," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
  31. Kavitha Shanmugam & Anju Baroth & Sachin Nande & Dalia M. M. Yacout & Mats Tysklind & Venkata K. K. Upadhyayula, 2019. "Social Cost Benefit Analysis of Operating Compressed Biomethane (CBM) Transit Buses in Cities of Developing Nations: A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
  32. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
  33. Gustafsson, M. & Anderberg, S., 2021. "Dimensions and characteristics of biogas policies – Modelling the European policy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  34. Alessandro Agostini & Ferdinando Battini & Jacopo Giuntoli & Vincenzo Tabaglio & Monica Padella & David Baxter & Luisa Marelli & Stefano Amaducci, 2015. "Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops," Energies, MDPI, vol. 8(6), pages 1-32, June.
  35. Hassan, Muhammad & Ding, Weimin & Umar, Muhammad & Hei, Kunlun & Bi, Jinhua & Shi, Zhendan, 2017. "Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge," Energy, Elsevier, vol. 118(C), pages 1256-1263.
  36. Khan, Imran & Kabir, Zobaidul, 2020. "Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment," Renewable Energy, Elsevier, vol. 150(C), pages 320-333.
  37. Ascher, Simon & Watson, Ian & Wang, Xiaonan & You, Siming, 2019. "Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility," Energy, Elsevier, vol. 181(C), pages 455-467.
  38. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
  39. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
  40. Akca, Mehmet Sadik & Sarikaya, Omer Visali & Doker, Mehmet Fatih & Ocak, Fatih & Kirlangicoglu, Cem & Karaaslan, Yakup & Satoglu, Sule Itir & Altinbas, Mahmut, 2023. "A detailed GIS based assessment of bioenergy plant locations using location-allocation algorithm," Applied Energy, Elsevier, vol. 352(C).
  41. Sahoo, Kamalakanta & Mani, Sudhagar, 2019. "Economic and environmental impacts of an integrated-state anaerobic digestion system to produce compressed natural gas from organic wastes and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  42. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
  43. Quek, Augustine & Ee, Alvin & Ng, Adam & Wah, Tong Yen, 2018. "Challenges in Environmental Sustainability of renewable energy options in Singapore," Energy Policy, Elsevier, vol. 122(C), pages 388-394.
  44. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.