IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4190-d254359.html
   My bibliography  Save this article

Social Cost Benefit Analysis of Operating Compressed Biomethane (CBM) Transit Buses in Cities of Developing Nations: A Case Study

Author

Listed:
  • Kavitha Shanmugam

    (Department of Chemistry, Umea University, SE 90187 Umea, Sweden)

  • Anju Baroth

    (Department of Habitat Ecology, Wild Life Institute of India, Uttarakhand 248002, India)

  • Sachin Nande

    (Engineering Research Center, TATA Motors, Pune 411016, India)

  • Dalia M. M. Yacout

    (Department of Chemistry, Umea University, SE 90187 Umea, Sweden)

  • Mats Tysklind

    (Department of Chemistry, Umea University, SE 90187 Umea, Sweden)

  • Venkata K. K. Upadhyayula

    (Department of Chemistry, Umea University, SE 90187 Umea, Sweden)

Abstract

Cities in developing nations have to deal with two significant sustainability challenges amidst rampant urbanization. First, consumer-generated food waste is increasing monumentally since open dumping is still followed as a predominant practice, the negative environmental externalities associated with food waste disposal are growing beyond manageable proportions. Second, the dependency on conventional fuels like diesel to operate transit buses, which is one of the major causes for deteriorating urban air quality. A nexus established between food waste management and operation of transit buses can improve the sustainable performance of cities in developing nations. In this study, a Life Cycle Assessment (LCA) supported Social Cost-Benefit Analysis (SCBA) is performed by considering a hypothetical scenario of establishing a large food waste treating biomethanation plant in Mumbai, India. The food waste from the city is transported to a biomethanation plant where it is subjected to an anaerobic digestion (AD) process. The biogas produced as a byproduct is upgraded to compressed biomethane (CBM) and used as a vehicle fuel to operate transit buses within the city. The LCA results suggest that CBM buses can reduce greenhouse gas and particulate matter emissions by 60% compared to diesel or compressed natural gas (CNG) buses. Fossil depletion potential of CBM buses is 98% lower than diesel, suggesting CBM’s importance in decoupling developing nations dependency on imported crude oil. The SCBA considers: (a) costs to stakeholders, i.e., fees for open dumping of food waste and cost of fuel for operating transit buses; and (b) social costs incurred by negative environmental externalities (obtained by monetizing LCA results) resulting from both, open dumping as well as fuel combustion. SCBA results indicate that the food waste-based CBM model can save 6.86 billion Indian rupees (USD 99.4 million) annually for Mumbai. The savings are made due to a reduction in stakeholder’s costs (fuel) coupled with societal, i.e., environmental externality costs if entire transit bus fleet operates on CBM fuel instead of conventional fuel mix (33:67 diesel to CNG) currently used. Although the study is performed for Mumbai, the results will be replicable to any city of developing nations facing similar issues.

Suggested Citation

  • Kavitha Shanmugam & Anju Baroth & Sachin Nande & Dalia M. M. Yacout & Mats Tysklind & Venkata K. K. Upadhyayula, 2019. "Social Cost Benefit Analysis of Operating Compressed Biomethane (CBM) Transit Buses in Cities of Developing Nations: A Case Study," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4190-:d:254359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burcin Atilgan & Adisa Azapagic, 2016. "Assessing the Environmental Sustainability of Electricity Generation in Turkey on a Life Cycle Basis," Energies, MDPI, vol. 9(1), pages 1-24, January.
    2. Atilgan, Burcin & Azapagic, Adisa, 2016. "An integrated life cycle sustainability assessment of electricity generation in Turkey," Energy Policy, Elsevier, vol. 93(C), pages 168-186.
    3. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idiano D’Adamo & Claudio Sassanelli, 2022. "Biomethane Community: A Research Agenda towards Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    2. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Pauls P. Argalis & Kristine Vegere, 2021. "Perspective Biomethane Potential and Its Utilization in the Transport Sector in the Current Situation of Latvia," Sustainability, MDPI, vol. 13(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    2. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    3. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    4. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    5. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.
    6. Rebeka Kovačič Lukman & Vasja Omahne & Damjan Krajnc, 2021. "Sustainability Assessment with Integrated Circular Economy Principles: A Toy Case Study," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    7. Gabriela Shirkey & Megan Belongeay & Susie Wu & Xiaoguang Ma & Hassan Tavakol & Annick Anctil & Sandra Marquette-Pyatt & Rodney A. Stewart & Parikith Sinha & Richard Corkish & Jiquan Chen & Ilke Celik, 2021. "An Environmental and Societal Analysis of the US Electrical Energy Industry Based on the Water–Energy Nexus," Energies, MDPI, vol. 14(9), pages 1-20, May.
    8. António A. Martins & Marta Simaria & Joaquim Barbosa & Ricardo Barbosa & Daniela T. Silva & Cristina S. Rocha & Teresa M. Mata & Nídia S. Caetano, 2018. "Life cycle assessment tool of electricity generation in Portugal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 129-143, December.
    9. Rafaella de Souza Henriques & Rodney Rezende Saldanha & Lineker Max Goulart Coelho, 2019. "An Air Pollutant Emission Analysis of Brazilian Electricity Production Projections and Other Countries," Energies, MDPI, vol. 12(15), pages 1-19, July.
    10. Daniel González-Prieto & Yolanda Fernández-Nava & Elena Marañón & Maria Manuela Prieto, 2020. "Effect of Decarbonisation Policies and Climate Change on Environmental Impacts due to Heating and Cooling in a Single-Family House," Sustainability, MDPI, vol. 12(9), pages 1-22, April.
    11. Oluwaseun Nubi & Stephen Morse & Richard J. Murphy, 2022. "Life Cycle Sustainability Assessment of Electricity Generation from Municipal Solid Waste in Nigeria: A Prospective Study," Energies, MDPI, vol. 15(23), pages 1-16, December.
    12. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
    13. Markéta Šerešová & Jiří Štefanica & Monika Vitvarová & Kristina Zakuciová & Petr Wolf & Vladimír Kočí, 2020. "Life Cycle Performance of Various Energy Sources Used in the Czech Republic," Energies, MDPI, vol. 13(21), pages 1-17, November.
    14. Marwa Hannouf & Getachew Assefa, 2018. "A Life Cycle Sustainability Assessment-Based Decision-Analysis Framework," Sustainability, MDPI, vol. 10(11), pages 1-22, October.
    15. Kucukvar, Murat & Haider, Muhammad Ali & Onat, Nuri Cihat, 2017. "Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 251-263.
    16. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    17. Nock, Destenie & Baker, Erin, 2019. "Holistic multi-criteria decision analysis evaluation of sustainable electric generation portfolios: New England case study," Applied Energy, Elsevier, vol. 242(C), pages 655-673.
    18. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
    19. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4190-:d:254359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.