IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp320-333.html
   My bibliography  Save this article

Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment

Author

Listed:
  • Khan, Imran
  • Kabir, Zobaidul

Abstract

To attain the sustainable development goals of the United Nations with a focus on the circular economy, it is necessary to explore every possible sustainable option in different sectors. Of these, sustainable waste management and electricity for all are the two most vital goals. However, to date, sustainability assessments of waste-to-energy (electricity) generation technologies have been limited in scale with respect to the three-dimensional sustainability framework (economic, environmental, and social). Most often, the assessments were dominated by environmental factors/indicators, omitting the social and economic indicators. This study thus considered a large number of indicators (34) with due importance placed on the three dimensions of sustainability towards sustainability assessment of four waste-to-energy options; incineration, gasification, pyrolysis, and anaerobic digestion (AD). Among the four technologies, AD and incineration are found as the most and least sustainable waste-to-energy technologies, respectively. Gasification, pyrolysis, and AD were found to be 33%, 65%, and 111% more sustainable waste-to-energy generation technologies than incineration. These findings were then discussed, paying particular attention to the developing world with a focus on Bangladesh, where waste-to-energy generation is yet to be developed. This is important for policymakers’ future development plans for waste management systems and renewable electricity generation in similar contexts of the developing world.

Suggested Citation

  • Khan, Imran & Kabir, Zobaidul, 2020. "Waste-to-energy generation technologies and the developing economies: A multi-criteria analysis for sustainability assessment," Renewable Energy, Elsevier, vol. 150(C), pages 320-333.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:320-333
    DOI: 10.1016/j.renene.2019.12.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811932004X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
    2. Edwards, Ward & Barron, F. Hutton, 1994. "SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement," Organizational Behavior and Human Decision Processes, Elsevier, vol. 60(3), pages 306-325, December.
    3. Xingpeng Chen & Jiaxing Pang & Zilong Zhang & Hengji Li, 2014. "Sustainability Assessment of Solid Waste Management in China: A Decoupling and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-14, December.
    4. Hua Li & Vilas Nitivattananon & Peng Li, 2015. "Developing a Sustainability Assessment Model to Analyze China’s Municipal Solid Waste Management Enhancement Strategy," Sustainability, MDPI, vol. 7(2), pages 1-26, January.
    5. Cherubini, Francesco & Bargigli, Silvia & Ulgiati, Sergio, 2009. "Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration," Energy, Elsevier, vol. 34(12), pages 2116-2123.
    6. Dongliang Zhang & Guangqing Huang & Yimin Xu & Qinghua Gong, 2015. "Waste-to-Energy in China: Key Challenges and Opportunities," Energies, MDPI, vol. 8(12), pages 1-15, December.
    7. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    8. Campbell, Rona & Pound, Pandora & Pope, Catherine & Britten, Nicky & Pill, Roisin & Morgan, Myfanwy & Donovan, Jenny, 2003. "Evaluating meta-ethnography: a synthesis of qualitative research on lay experiences of diabetes and diabetes care," Social Science & Medicine, Elsevier, vol. 56(4), pages 671-684, February.
    9. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    10. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    11. Milutinović, Biljana & Stefanović, Gordana & Dassisti, Michele & Marković, Danijel & Vučković, Goran, 2014. "Multi-criteria analysis as a tool for sustainability assessment of a waste management model," Energy, Elsevier, vol. 74(C), pages 190-201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milutinović, Biljana & Stefanović, Gordana & Đekić, Petar S. & Mijailović, Ivan & Tomić, Mladen, 2017. "Environmental assessment of waste management scenarios with energy recovery using life cycle assessment and multi-criteria analysis," Energy, Elsevier, vol. 137(C), pages 917-926.
    2. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    3. Abdulla Alabbasi & Jhuma Sadhukhan & Matthew Leach & Mohammed Sanduk, 2022. "Sustainable Indicators for Integrating Renewable Energy in Bahrain’s Power Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    4. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    5. Parisa Rafiaani & Zoumpolia Dikopoulou & Miet Dael & Tom Kuppens & Hossein Azadi & Philippe Lebailly & Steven Passel, 2020. "Identifying Social Indicators for Sustainability Assessment of CCU Technologies: A Modified Multi-criteria Decision Making," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(1), pages 15-44, January.
    6. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    7. Jamal, Taskin & Urmee, Tania & Shafiullah, G.M., 2020. "Planning of off-grid power supply systems in remote areas using multi-criteria decision analysis," Energy, Elsevier, vol. 201(C).
    8. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    9. Barfod, Michael B. & Kaplan, Sigal & Frenzel, Ina & Klauenberg, Jens, 2016. "COPE-SMARTER – A decision support system for analysing the challenges, opportunities and policy initiatives: A case study of electric commercial vehicles market diffusion in Denmark," Research in Transportation Economics, Elsevier, vol. 55(C), pages 3-11.
    10. Scott, James A. & Ho, William & Dey, Prasanta K., 2012. "A review of multi-criteria decision-making methods for bioenergy systems," Energy, Elsevier, vol. 42(1), pages 146-156.
    11. Torkayesh, Ali Ebadi & Rajaeifar, Mohammad Ali & Rostom, Madona & Malmir, Behnam & Yazdani, Morteza & Suh, Sangwon & Heidrich, Oliver, 2022. "Integrating life cycle assessment and multi criteria decision making for sustainable waste management: Key issues and recommendations for future studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Carnero, María Carmen & Gómez, Andrés, 2017. "Maintenance strategy selection in electric power distribution systems," Energy, Elsevier, vol. 129(C), pages 255-272.
    13. Khishtandar, Soheila & Zandieh, Mostafa & Dorri, Behrouz, 2017. "A multi criteria decision making framework for sustainability assessment of bioenergy production technologies with hesitant fuzzy linguistic term sets: The case of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1130-1145.
    14. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Dragan Pamučar & Fatih Ecer & Goran Cirovic & Melfi A. Arlasheedi, 2020. "Application of Improved Best Worst Method (BWM) in Real-World Problems," Mathematics, MDPI, vol. 8(8), pages 1-19, August.
    16. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Parajuli, Ranjan & Dalgaard, Tommy & Jørgensen, Uffe & Adamsen, Anders Peter S. & Knudsen, Marie Trydeman & Birkved, Morten & Gylling, Morten & Schjørring, Jan Kofod, 2015. "Biorefining in the prevailing energy and materials crisis: a review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 244-263.
    18. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis," Energy Policy, Elsevier, vol. 56(C), pages 418-424.
    19. Salem Nechi & Belaid Aouni & Zouhair Mrabet, 2020. "Managing sustainable development through goal programming model and satisfaction functions," Annals of Operations Research, Springer, vol. 293(2), pages 747-766, October.
    20. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:320-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.