IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i9p3958-3974.html
   My bibliography  Save this item

Review of mathematical models of future oil supply: Historical overview and synthesizing critique

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Malanichev, A., 2018. "Modelling of Economic Oscillations of Shale Oil Production on the Basis of Analytical Solutions of a Differentiation Equation with a Retarded Argument," Journal of the New Economic Association, New Economic Association, vol. 38(2), pages 54-74.
  2. Semenychev, V.K. & Kurkin, E.I. & Semenychev, E.V. & Danilova, A.A., 2017. "Multimodel forecasting of non-renewable resources production," Energy, Elsevier, vol. 130(C), pages 448-460.
  3. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
  4. Okullo, Samuel J. & Reynès, Frédéric, 2011. "Can reserve additions in mature crude oil provinces attenuate peak oil?," Energy, Elsevier, vol. 36(9), pages 5755-5764.
  5. Heun, Matthew Kuperus & de Wit, Martin, 2012. "Energy return on (energy) invested (EROI), oil prices, and energy transitions," Energy Policy, Elsevier, vol. 40(C), pages 147-158.
  6. Semenychev, V.K. & Kurkin, E.I. & Semenychev, E.V., 2014. "Modelling and forecasting the trends of life cycle curves in the production of non-renewable resources," Energy, Elsevier, vol. 75(C), pages 244-251.
  7. Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
  8. Martin de Wit & Matthew Kuperus Heun & Douglas J Crookes, 2013. "An overview of salient factors, relationships and values to support integrated energy-economic systems dynamic modelling," Working Papers 02/2013, Stellenbosch University, Department of Economics.
  9. Sepehr Ramyar & Farhad Kianfar, 2019. "Forecasting Crude Oil Prices: A Comparison Between Artificial Neural Networks and Vector Autoregressive Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 743-761, February.
  10. David C. Lane & Birgit Kopainsky & Etiënne A.J.A. Rouwette, 2017. "Enduring Feedback," Systems Research and Behavioral Science, Wiley Blackwell, vol. 34(4), pages 510-513, July.
  11. Ward, James D. & Mohr, Steve H. & Myers, Baden R. & Nel, Willem P., 2012. "High estimates of supply constrained emissions scenarios for long-term climate risk assessment," Energy Policy, Elsevier, vol. 51(C), pages 598-604.
  12. Reynolds, Douglas B., 2013. "Uncertainty in exhaustible natural resource economics: The irreversible sunk costs of Hotelling," Resources Policy, Elsevier, vol. 38(4), pages 532-541.
  13. Steward, David R. & Allen, Andrew J., 2016. "Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110," Agricultural Water Management, Elsevier, vol. 170(C), pages 36-48.
  14. Solé, Jordi & García-Olivares, Antonio & Turiel, Antonio & Ballabrera-Poy, Joaquim, 2018. "Renewable transitions and the net energy from oil liquids: A scenarios study," Renewable Energy, Elsevier, vol. 116(PA), pages 258-271.
  15. Wang, Xibo & Lei, Yalin & Ge, Jianping & Wu, Sanmang, 2015. "Production forecast of China׳s rare earths based on the Generalized Weng model and policy recommendations," Resources Policy, Elsevier, vol. 43(C), pages 11-18.
  16. Jakobsson, Kristofer & Bentley, Roger & Söderbergh, Bengt & Aleklett, Kjell, 2012. "The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves," Energy Policy, Elsevier, vol. 41(C), pages 860-870.
  17. Elaine Garcia de Lima & Cécile Bulle & Cássia Maria Lie Ugaya, 2018. "A Functionality Based Wood Substitutability Index," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
  18. Goldemberg, José & Schaeffer, Roberto & Szklo, Alexandre & Lucchesi, Rodrigo, 2014. "Oil and natural gas prospects in South America: Can the petroleum industry pave the way for renewables in Brazil?," Energy Policy, Elsevier, vol. 64(C), pages 58-70.
  19. Alexander Malanichev, 2018. "Limits of Technological Efficiency of Shale Oil Production in the USA," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(4), pages 78-89.
  20. Reynolds, Douglas B. & Baek, Jungho, 2012. "Much ado about Hotelling: Beware the ides of Hubbert," Energy Economics, Elsevier, vol. 34(1), pages 162-170.
  21. Liu, Hongda & Li, Lun & Han, Yang & Lu, Fang, 2019. "Method of identifying the lengths of equivalent clear-sky periods in the time series of DNI measurements based on generalized atmospheric turbidity," Renewable Energy, Elsevier, vol. 136(C), pages 179-192.
  22. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
  23. Reynolds, Douglas B., 2014. "World oil production trend: Comparing Hubbert multi-cycle curves," Ecological Economics, Elsevier, vol. 98(C), pages 62-71.
  24. Hallock, John L. & Wu, Wei & Hall, Charles A.S. & Jefferson, Michael, 2014. "Forecasting the limits to the availability and diversity of global conventional oil supply: Validation," Energy, Elsevier, vol. 64(C), pages 130-153.
  25. Jean-Pierre Amigues & Michel Moreaux & Nguyen Manh-Hung, 2019. "The Fossil Energy Interlude: Optimal Building, Maintaining and Scraping a Dedicated Capital, and the Hotelling Rule," Working Papers 2019.07, FAERE - French Association of Environmental and Resource Economists.
  26. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
  27. Guseo, Renato & Mortarino, Cinzia & Darda, Md Abud, 2015. "Homogeneous and heterogeneous diffusion models: Algerian natural gas production," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 366-378.
  28. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  29. Furlan, Claudia & Guidolin, Mariangela & Guseo, Renato, 2016. "Has the Fukushima accident influenced short-term consumption in the evolution of nuclear energy? An analysis of the world and seven leading countries," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 37-49.
  30. Jakobsson, Kristofer & Söderbergh, Bengt & Snowden, Simon & Aleklett, Kjell, 2014. "Bottom-up modeling of oil production: A review of approaches," Energy Policy, Elsevier, vol. 64(C), pages 113-123.
  31. Berk, Istemi & Ediger, Volkan Ş., 2016. "Forecasting the coal production: Hubbert curve application on Turkey's lignite fields," Resources Policy, Elsevier, vol. 50(C), pages 193-203.
  32. Douglas B. Reynolds, 2024. "U.S. shale oil production and trend estimation: Forecasting a Hubbert model," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 468-487, January.
  33. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
  34. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
  35. Hallack, Larissa Nogueira & Szklo, Alexandre, 2019. "Assessing the exploratory potential in Brazil by applying a creaming curve variant," Energy Policy, Elsevier, vol. 129(C), pages 672-683.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.