IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i11p4349-4355.html
   My bibliography  Save this item

Coal chemical industry and its sustainable development in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jennifer M. Thomsen & Susan C. Caplow, 2017. "Defining success over time for large landscape conservation organizations," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(7), pages 1153-1172, July.
  2. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
  3. Zhao, Zhenghui & Wang, Ruikun & Ge, Lichao & Wu, Junhong & Yin, Qianqian & Wang, Chunbo, 2019. "Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission," Energy, Elsevier, vol. 168(C), pages 609-618.
  4. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
  5. Huang, Lihua & Zhao, Wei, 2022. "The impact of green trade and green growth on natural resources," Resources Policy, Elsevier, vol. 77(C).
  6. Mingquan Wang & Lingyun Zhang & Xin Su & Yang Lei & Qun Shen & Wei Wei & Maohua Wang, 2019. "Assessing the technology impact for industry carbon density reduction in China based on C3IAM-Tice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1455-1468, December.
  7. Li, Junjie, 2024. "Spatialized carbon-energy-water footprint of emerging coal chemical industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  8. Tian, Jinping & Shi, Han & Li, Xing & Chen, Lujun, 2012. "Measures and potentials of energy-saving in a Chinese fine chemical industrial park," Energy, Elsevier, vol. 46(1), pages 459-470.
  9. Jiaqi Wang & Jixiong Zhang & Meng Li & Majid Sartaj & Yunbo Wang, 2022. "A Numerical Simulation of the Interaction of Aggregate and Rockfill in a Gangue Fluidized Filling Method," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
  10. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
  11. Zhang, Jianyun & Ma, Linwei & Li, Zheng & Ni, Weidou, 2014. "The impact of system configuration on material utilization in the coal-based polygeneration of methanol and electricity," Energy, Elsevier, vol. 75(C), pages 136-145.
  12. Wei, Zhongbao & Li, Xiaolu & Xu, Lijun & Cheng, Yanting, 2013. "Comparative study of computational intelligence approaches for NOx reduction of coal-fired boiler," Energy, Elsevier, vol. 55(C), pages 683-692.
  13. Cao, Wensheng & Bluth, Christoph, 2013. "Challenges and countermeasures of China’s energy security," Energy Policy, Elsevier, vol. 53(C), pages 381-388.
  14. Hu, Fan & Li, Pengfei & Zhang, Tai & Zu, Daohua & Cheng, Pengfei & Liu, Yaowei & Mi, Jianchun & Liu, Zhaohui, 2022. "Experimental investigation on co-firing residual char and pulverized coal under MILD combustion using low-temperature preheating air," Energy, Elsevier, vol. 244(PA).
  15. Chen, Yu & Wang, Yuandi & Zhao, Changyi, 2024. "From riches to digitalization: The role of AMC in overcoming challenges of digital transformation in resource-rich regions," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
  16. Huang, Yi & Yi, Qun & Kang, Jing-Xian & Zhang, Ya-Gang & Li, Wen-Ying & Feng, Jie & Xie, Ke-Chang, 2019. "Investigation and optimization analysis on deployment of China coal chemical industry under carbon emission constraints," Applied Energy, Elsevier, vol. 254(C).
  17. Julien Chevallier, 2013. "At the crossroads: can China grow in a low-carbon way?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 31, pages 666-681, Edward Elgar Publishing.
  18. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
  19. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
  20. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
  21. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
  22. Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
  23. Wu, Yang & Meng, Xiangbao & Zhang, Yansong & Shi, Lei & Wu, Qiyan & Liu, Li & Wang, Zhifeng & Liu, Jiqing & Yan, Ke & Wang, Tong, 2023. "Experimental study on the suppression of coal dust explosion by silica aerogel," Energy, Elsevier, vol. 267(C).
  24. Jie, Dingfei & Xu, Xiangyang & Guo, Fei, 2021. "The future of coal supply in China based on non-fossil energy development and carbon price strategies," Energy, Elsevier, vol. 220(C).
  25. Chen, Jianjun & Yang, Siyu & Qian, Yu, 2019. "A novel path for carbon-rich resource utilization with lower emission and higher efficiency: An integrated process of coal gasification and coking to methanol production," Energy, Elsevier, vol. 177(C), pages 304-318.
  26. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
  27. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
  28. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  29. Li, Jin & Hu, Shanying, 2017. "History and future of the coal and coal chemical industry in China," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 13-24.
  30. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
  31. Li, Qingwei & Yao, Guihuan, 2017. "Improved coal combustion optimization model based on load balance and coal qualities," Energy, Elsevier, vol. 132(C), pages 204-212.
  32. Yi, Qun & Feng, Jie & Wu, Yanli & Li, Wenying, 2014. "3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system," Energy, Elsevier, vol. 66(C), pages 285-294.
  33. Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
  34. Kang, Shi-Gang & Zong, Zhi-Min & Shui, Heng-Fu & Wang, Zhi-Cai & Wei, Xian-Yong, 2011. "Comparison of catalytic hydroliquefaction of Xiaolongtan lignite over FeS, FeS+S and SO42-/ZrO2," Energy, Elsevier, vol. 36(1), pages 41-45.
  35. Chunyu Wang & Ling Zhu, 2021. "Life Cycle Assessment of Coal-to-Liquid Process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14453-14471, October.
  36. Linan Dun & Xinyu Yu & Han Wang & Pengmusen Lin & Ziyao Xiong & Xuqiang Guo & Libo Zhang, 2023. "Unexpected oxidative cracking of diformyltricyclodecanes under catalyst-free and ultra-low temperature," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 457-463.
  37. Chen, Zhichao & Qiao, Yanyu & Wu, Xiaolan & Zheng, Yu & Li, Jiawei & Yuan, Zhenhua & Li, Zhengqi, 2023. "Effect of demineralization on pyrolysis semi-coke physical and chemical characteristics and oxy-fuel combustion characteristics," Energy, Elsevier, vol. 262(PB).
  38. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2011. "Technoeconomic assessment of China’s indirect coal liquefaction projects with different CO2 capture alternatives," Energy, Elsevier, vol. 36(11), pages 6559-6566.
  39. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
  40. He, Chang & Feng, Xiao, 2012. "Evaluation indicators for energy-chemical systems with multi-feed and multi-product," Energy, Elsevier, vol. 43(1), pages 344-354.
  41. Zeng, Xi & Wang, Fang & Han, Zhennan & Han, Jiangze & Zhang, Jianling & Wu, Rongcheng & Xu, Guangwen, 2019. "Assessment of char property on tar catalytic reforming in a fluidized bed reactor for adopting a two-stage gasification process," Applied Energy, Elsevier, vol. 248(C), pages 115-125.
  42. Piotr Gibas & Agnieszka Majorek, 2020. "Analysis of Land-Use Change between 2012–2018 in Europe in Terms of Sustainable Development," Land, MDPI, vol. 9(2), pages 1-20, February.
  43. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  44. Yang, Chi-Jen & Jackson, Robert B., 2012. "China's growing methanol economy and its implications for energy and the environment," Energy Policy, Elsevier, vol. 41(C), pages 878-884.
  45. Wang, Chunlin & Liu, Yang & Zheng, Song & Jiang, Aipeng, 2018. "Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process," Energy, Elsevier, vol. 153(C), pages 149-158.
  46. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.
  47. Man, Yi & Yang, Siyu & Zhang, Jun & Qian, Yu, 2014. "Conceptual design of coke-oven gas assisted coal to olefins process for high energy efficiency and low CO2 emission," Applied Energy, Elsevier, vol. 133(C), pages 197-205.
  48. Zhai, Yifan & Wang, Shuofeng & Wang, Zhe & Zhang, Tianyue & Ji, Changwei, 2023. "Experimental and numerical study on laminar combustion characteristics of by-product hydrogen coke oven gas," Energy, Elsevier, vol. 278(C).
  49. Huo, Jinwei & Yang, Degang & Xia, Fuqiang & Tang, Hong & Zhang, Wenbiao, 2013. "Feasibility analysis and policy recommendations for the development of the coal based SNG industry in Xinjiang," Energy Policy, Elsevier, vol. 61(C), pages 3-11.
  50. Chen, Liangzhou & Qi, Xuyao & Zhang, Yabo & Rao, Yuxuan & Wang, Tao, 2022. "Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues," Energy, Elsevier, vol. 240(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.