IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i10d10.1007_s10668-021-01252-z.html
   My bibliography  Save this article

Life Cycle Assessment of Coal-to-Liquid Process

Author

Listed:
  • Chunyu Wang

    (Beijing Institute of Petrochemical Technology
    Beijing University of Technology)

  • Ling Zhu

    (Beijing Institute of Petrochemical Technology)

Abstract

In this study, the life cycle assessment method was used to evaluate energy and material consumption and pollutant emission based on the 2013 ledger data of a coal chemistry factory in western China and the subprocesses used include coal gasification, conversion, purification, Fischer–Tropsch synthesis and liquid hydrocarbons separation. This method provides a comprehensive understanding of the potential environmental burden of coal-to-liquid (CTL) production and can be used to identify areas with significant potential for improving energy efficiency and reducing pollutant emissions. The results indicate that the main source of pollution in the CTL program is CTL processing step. Large amounts of water are consumed in the coal mining and CTL processing. The total amount of gaseous pollutants discharged to produce one ton of liquid hydrocarbon is 25.629 t, and 99.5% of this total consists of greenhouse gases. Over the entire life cycle of one ton of this liquid hydrocarbon, 31.955 tons of greenhouse gases (calculated as CO2) are emitted, and the weighted impact potential value is 3.149/PET2010. A series of relevant and consistent emission standards, laws and policies must be issued for the reasonable and orderly growth of the coal chemical industry.

Suggested Citation

  • Chunyu Wang & Ling Zhu, 2021. "Life Cycle Assessment of Coal-to-Liquid Process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14453-14471, October.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01252-z
    DOI: 10.1007/s10668-021-01252-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01252-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01252-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qi, Tianyu & Zhou, Li & Zhang, Xiliang & Ren, Xiangkun, 2012. "Regional economic output and employment impact of coal-to-liquids (CTL) industry in China: An input–output analysis," Energy, Elsevier, vol. 46(1), pages 259-263.
    2. Wang, Jinman & Wang, Ruogu & Zhu, Yucheng & Li, Jiayan, 2018. "Life cycle assessment and environmental cost accounting of coal-fired power generation in China," Energy Policy, Elsevier, vol. 115(C), pages 374-384.
    3. Li, Xin & Ou, Xunmin & Zhang, Xu & Zhang, Qian & Zhang, Xiliang, 2013. "Life-cycle fossil energy consumption and greenhouse gas emission intensity of dominant secondary energy pathways of China in 2010," Energy, Elsevier, vol. 50(C), pages 15-23.
    4. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    5. Verma, Aman & Kumar, Amit, 2015. "Life cycle assessment of hydrogen production from underground coal gasification," Applied Energy, Elsevier, vol. 147(C), pages 556-568.
    6. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Zhang, Xiaojin & Bauer, Christian & Mutel, Christopher L. & Volkart, Kathrin, 2017. "Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications," Applied Energy, Elsevier, vol. 190(C), pages 326-338.
    8. Xiongfeng Pan & Yaobo Yan & Xiaoxue Peng & Qing Liu, 2016. "Analysis of the Threshold Effect of Financial Development on China’s Carbon Intensity," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    9. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mauro Cordella & Felice Alfieri & Javier Sanfelix, 2021. "Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 448-464, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    2. Bareiß, Kay & de la Rua, Cristina & Möckl, Maximilian & Hamacher, Thomas, 2019. "Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems," Applied Energy, Elsevier, vol. 237(C), pages 862-872.
    3. Li, Guoxuan & Cui, Peizhe & Wang, Yinglong & Liu, Zhiqiang & Zhu, Zhaoyou & Yang, Sheng, 2020. "Life cycle energy consumption and GHG emissions of biomass-to-hydrogen process in comparison with coal-to-hydrogen process," Energy, Elsevier, vol. 191(C).
    4. Li, Guang & Zhang, Ke & Yang, Bin & Liu, Fan & Weng, Yujing & Liu, Zheyu & Fang, Yitian, 2019. "Life cycle analysis of a coal to hydrogen process based on ash agglomerating fluidized bed gasification," Energy, Elsevier, vol. 174(C), pages 638-646.
    5. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    6. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    7. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    8. Seck, Gondia Sokhna & Hache, Emmanuel & D'Herbemont, Vincent & Guyot, Mathis & Malbec, Louis-Marie, 2023. "Hydrogen development in Europe: Estimating material consumption in net zero emissions scenarios," International Economics, Elsevier, vol. 176(C).
    9. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    11. Geng, Jiang-Bo & Ji, Qiang, 2014. "Multi-perspective analysis of China's energy supply security," Energy, Elsevier, vol. 64(C), pages 541-550.
    12. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Tang, Song-Zhen & Wang, Fei-Long & He, Ya-Ling & Yu, Yang & Tong, Zi-Xiang, 2019. "Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm," Applied Energy, Elsevier, vol. 239(C), pages 908-918.
    15. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Xiaonan Wang & Licheng Wang & Jianping Chen & Shouting Zhang & Paolo Tarolli, 2020. "Assessment of the External Costs of Life Cycle of Coal: The Case Study of Southwestern China," Energies, MDPI, vol. 13(15), pages 1-26, August.
    17. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    18. Zheqi Yang & Xuming Dou & Yuqing Jiang & Pengfei Luo & Yu Ding & Baosheng Zhang & Xu Tang, 2022. "Tracking the CO 2 Emissions of China’s Coal Production via Global Supply Chains," Energies, MDPI, vol. 15(16), pages 1-10, August.
    19. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
    20. Xue, Jian & Guo, Na & Zhao, Laijun & Zhu, Di & Ji, Xiaoqin, 2020. "A cooperative inter-provincial model for energy conservation based on futures trading," Energy, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01252-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.