IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v28y2003i9p929-939.html
   My bibliography  Save this item

The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
  2. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
  3. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
  4. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
  5. Liu, Long & Zhao, Jing & Liu, Xin & Wang, Zhaoxia, 2014. "Energy consumption comparison analysis of high energy efficiency office buildings in typical climate zones of China and U.S. based on correction model," Energy, Elsevier, vol. 65(C), pages 221-232.
  6. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
  7. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
  8. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
  9. Amin Nazarahari & Nader Ghotbi & Koji Tokimatsu, 2021. "Energy Poverty among College Students in Japan in a Survey of Students’ Knowledge, Attitude and Practices towards Energy Use," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
  10. Kenisarin, Murat & Kenisarina, Kamola, 2007. "Energy saving potential in the residential sector of Uzbekistan," Energy, Elsevier, vol. 32(8), pages 1319-1325.
  11. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
  12. Serli Kiremitciyan & Ahmet Goncu & Tolga Umut Kuzubas, 2014. "A Comparison of Stochastic Models of Natural Gas Consumption," Working Papers 2014/10, Bogazici University, Department of Economics.
  13. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
  14. Mourshed, Monjur, 2011. "The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh," Applied Energy, Elsevier, vol. 88(11), pages 3737-3746.
  15. Kuru Merve & Calis Gulben, 2020. "Application of time series models for heating degree day forecasting," Organization, Technology and Management in Construction, Sciendo, vol. 12(1), pages 2137-2146, January.
  16. Fazeli, Reza & Davidsdottir, Brynhildur & Hallgrimsson, Jonas Hlynur, 2016. "Residential energy demand for space heating in the Nordic countries: Accounting for interfuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1210-1226.
  17. Szoplik, Jolanta, 2016. "Improving the natural gas transporting based on the steady state simulation results," Energy, Elsevier, vol. 109(C), pages 105-116.
  18. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
  19. David Kaftan & George F. Corliss & Richard J. Povinelli & Ronald H. Brown, 2021. "A Surrogate Weather Generator for Estimating Natural Gas Design Day Conditions," Energies, MDPI, vol. 14(21), pages 1-19, November.
  20. He, Hongming & Jim, C.Y., 2012. "Coupling model of energy consumption with changes in environmental utility," Energy Policy, Elsevier, vol. 43(C), pages 235-243.
  21. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
  22. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
  23. Weibin Lin & Bin Chen & Shichao Luo & Li Liang, 2014. "Factor Analysis of Residential Energy Consumption at the Provincial Level in China," Sustainability, MDPI, vol. 6(11), pages 1-15, November.
  24. Tomasz Cieślik & Piotr Narloch & Adam Szurlej & Krzysztof Kogut, 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland," Energies, MDPI, vol. 15(4), pages 1-18, February.
  25. Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2019. "Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(1), pages 1-22.
  26. Guo, Jing & Lin, Penghui & Zhang, Limao & Pan, Yue & Xiao, Zhonghua, 2023. "Dynamic adaptive encoder-decoder deep learning networks for multivariate time series forecasting of building energy consumption," Applied Energy, Elsevier, vol. 350(C).
  27. Huang, Lizhen & Bohne, Rolf André & Lohne, Jardar, 2015. "Shelter and residential building energy consumption within the 450 ppm CO2eq constraints in different climate zones," Energy, Elsevier, vol. 90(P1), pages 965-979.
  28. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
  29. Yang, Liu & Lam, Joseph C. & Tsang, C.L., 2008. "Energy performance of building envelopes in different climate zones in China," Applied Energy, Elsevier, vol. 85(9), pages 800-817, September.
  30. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
  31. Zhao, Jing & Duan, Yaoqi & Liu, Xiaojuan, 2019. "Study on the policy of replacing coal-fired boilers with gas-fired boilers for central heating based on the 3E system and the TOPSIS method: A case in Tianjin, China," Energy, Elsevier, vol. 189(C).
  32. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
  33. Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
  34. Payne, James E. & Loomis, David G. & Wilson, Renardo, 2011. "Residential Natural Gas Demand in Illinois: Evidence from the ARDL Bounds Testing Approach," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 41(2), pages 1-10.
  35. Reza Fazeli & Brynhildur Davidsdottir & Jonas Hlynur Hallgrimsson, 2016. "Climate Impact On Energy Demand For Space Heating In Iceland," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-23, May.
  36. Ozalp, C. & Saydam, D.B. & Çerçi, K.N. & Hürdoğan, E. & Moran, H., 2019. "Evaluation of a sample building with different type building elements in an energetic and environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  37. Fabien Rouault & Felipe Ossio & Paulina González-Levín & Francisco Meza, 2019. "Impact of Climate Change on the Energy Needs of Houses in Chile," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
  38. Ergun Yukseltan & Ahmet Yucekaya & Ayse Humeyra Bilge & Esra Agca Aktunc, 2020. "Forecasting Models for Daily Natural Gas Consumption Considering Periodic Variations and Demand Segregation," Papers 2003.13385, arXiv.org.
  39. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
  40. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
  41. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
  42. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
  43. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
  44. Karadede, Yusuf & Ozdemir, Gultekin & Aydemir, Erdal, 2017. "Breeder hybrid algorithm approach for natural gas demand forecasting model," Energy, Elsevier, vol. 141(C), pages 1269-1284.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.