IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7118-d669683.html
   My bibliography  Save this article

A Surrogate Weather Generator for Estimating Natural Gas Design Day Conditions

Author

Listed:
  • David Kaftan

    (Marquette Energy Analytics, Marquette University, Milwaukee, WI 53202, USA)

  • George F. Corliss

    (Marquette Energy Analytics, Marquette University, Milwaukee, WI 53202, USA)

  • Richard J. Povinelli

    (Marquette Energy Analytics, Marquette University, Milwaukee, WI 53202, USA)

  • Ronald H. Brown

    (Marquette Energy Analytics, Marquette University, Milwaukee, WI 53202, USA)

Abstract

Natural gas customers rely upon utilities to provide gas for heating in the coldest parts of winter. Heating capacity is expensive, so utilities and end users (represented by commissions) must agree on the coldest day on which a utility is expected to meet demand. The return period of such a day is long relative to the amount of weather data that are typically available. This paper develops a weather resampling method called the Surrogate Weather Resampler, which creates a large dataset to support analysis of extremely infrequent events. While most current methods for generating weather data are based on simulation, this method resamples the deviations from typical weather. The paper also shows how extreme temperatures are strongly correlated to the demand for natural gas. The Surrogate Weather Resampler was compared in-sample and out-of-sample to the WeaGETS weather generator using both the Kolmogorov–Smirnov test and an exceedance-based test for cold weather generation. A naïve benchmark was also examined. These methods studied weather data from the National Oceanic and Atmospheric Administration and AccuWeather. Weather data were collected for 33 weather stations across North America, with 69 years of data from each weather station. We show that the Surrogate Weather Resampler can reproduce the cold tail of distribution better than the naïve benchmark and WeaGETS.

Suggested Citation

  • David Kaftan & George F. Corliss & Richard J. Povinelli & Ronald H. Brown, 2021. "A Surrogate Weather Generator for Estimating Natural Gas Design Day Conditions," Energies, MDPI, vol. 14(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7118-:d:669683
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliver, Ronan & Duffy, Aidan & Enright, Bernard & O'Connor, Rodger, 2017. "Forecasting peak-day consumption for year-ahead management of natural gas networks," Utilities Policy, Elsevier, vol. 44(C), pages 1-11.
    2. Sarak, H & Satman, A, 2003. "The degree-day method to estimate the residential heating natural gas consumption in Turkey: a case study," Energy, Elsevier, vol. 28(9), pages 929-939.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yiran & Sun, Xiaolei & Ji, Qiang & Zhang, Dayong, 2023. "Climate events matter in the global natural gas market," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Cieślik & Piotr Narloch & Adam Szurlej & Krzysztof Kogut, 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland," Energies, MDPI, vol. 15(4), pages 1-18, February.
    2. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    3. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    4. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    5. Fabien Rouault & Felipe Ossio & Paulina González-Levín & Francisco Meza, 2019. "Impact of Climate Change on the Energy Needs of Houses in Chile," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    6. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    7. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    8. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    9. Zhu, Dan & Tao, Shu & Wang, Rong & Shen, Huizhong & Huang, Ye & Shen, Guofeng & Wang, Bin & Li, Wei & Zhang, Yanyan & Chen, Han & Chen, Yuanchen & Liu, Junfeng & Li, Bengang & Wang, Xilong & Liu, Wenx, 2013. "Temporal and spatial trends of residential energy consumption and air pollutant emissions in China," Applied Energy, Elsevier, vol. 106(C), pages 17-24.
    10. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    11. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    12. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    13. Weibin Lin & Bin Chen & Shichao Luo & Li Liang, 2014. "Factor Analysis of Residential Energy Consumption at the Provincial Level in China," Sustainability, MDPI, vol. 6(11), pages 1-15, November.
    14. Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2019. "Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(1), pages 1-22.
    15. Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
    16. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    17. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    18. Dombaycı, Ö. Altan, 2009. "Degree-days maps of Turkey for various base temperatures," Energy, Elsevier, vol. 34(11), pages 1807-1812.
    19. Zhang, L.Y. & Jin, L.W. & Wang, Z.N. & Zhang, J.Y. & Liu, X. & Zhang, L.H., 2017. "Effects of wall configuration on building energy performance subject to different climatic zones of China," Applied Energy, Elsevier, vol. 185(P2), pages 1565-1573.
    20. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7118-:d:669683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.