IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v150y2018icp759-769.html
   My bibliography  Save this item

Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
  2. Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
  3. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
  4. Zhengxin, Jiang & Qin, Shi & Yujiang, Wei & Hanlin, Wei & Bingzhao, Gao & Lin, He, 2021. "An Immune Genetic Extended Kalman Particle Filter approach on state of charge estimation for lithium-ion battery," Energy, Elsevier, vol. 230(C).
  5. Ace Dimitrievski & Sonja Filiposka & Francisco José Melero & Eftim Zdravevski & Petre Lameski & Ivan Miguel Pires & Nuno M. Garcia & José Paulo Lousado & Vladimir Trajkovik, 2021. "Rural Healthcare IoT Architecture Based on Low-Energy LoRa," IJERPH, MDPI, vol. 18(14), pages 1-25, July.
  6. Zheng, Yuejiu & Wang, Jingjing & Qin, Chao & Lu, Languang & Han, Xuebing & Ouyang, Minggao, 2019. "A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 185(C), pages 361-371.
  7. Liu, Mengmeng & Xu, Jun & Jiang, Yihui & Mei, Xuesong, 2023. "Multi-dimensional features based data-driven state of charge estimation method for LiFePO4 batteries," Energy, Elsevier, vol. 274(C).
  8. Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
  9. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
  10. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
  11. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
  12. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
  13. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
  14. Singh, Karanjot & Tjahjowidodo, Tegoeh & Boulon, Loïc & Feroskhan, Mir, 2022. "Framework for measurement of battery state-of-health (resistance) integrating overpotential effects and entropy changes using energy equilibrium," Energy, Elsevier, vol. 239(PA).
  15. Pei, Pucheng & Zhou, Qibin & Wu, Lei & Wu, Ziyao & Hua, Jianfeng & Fan, Huimin, 2020. "Capacity estimation for lithium-ion battery using experimental feature interval approach," Energy, Elsevier, vol. 203(C).
  16. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
  17. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
  18. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
  19. Capkova, Dominika & Knap, Vaclav & Fedorkova, Andrea Strakova & Stroe, Daniel-Ioan, 2023. "Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging," Applied Energy, Elsevier, vol. 332(C).
  20. Ospina Agudelo, Brian & Zamboni, Walter & Monmasson, Eric, 2021. "Application domain extension of incremental capacity-based battery SoH indicators," Energy, Elsevier, vol. 234(C).
  21. Zhang, Zhendong & Kong, Xiangdong & Zheng, Yuejiu & Zhou, Long & Lai, Xin, 2019. "Real-time diagnosis of micro-short circuit for Li-ion batteries utilizing low-pass filters," Energy, Elsevier, vol. 166(C), pages 1013-1024.
  22. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
  23. Yang, Xiaolong & Chen, Yongji & Li, Bin & Luo, Dong, 2020. "Battery states online estimation based on exponential decay particle swarm optimization and proportional-integral observer with a hybrid battery model," Energy, Elsevier, vol. 191(C).
  24. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
  25. Wang, Ya-Xiong & Chen, Zhenhang & Zhang, Wei, 2022. "Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning," Energy, Elsevier, vol. 244(PB).
  26. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
  27. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
  28. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
  29. Ko, Chi-Jyun & Chen, Kuo-Ching & Su, Ting-Wei, 2024. "Differential current in constant-voltage charging mode: A novel tool for state-of-health and state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
  30. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
  31. Qinghe Liu & Shouzhi Liu & Haiwei Liu & Hao Qi & Conggan Ma & Lijun Zhao, 2019. "Evaluation of LFP Battery SOC Estimation Using Auxiliary Particle Filter," Energies, MDPI, vol. 12(11), pages 1-13, May.
  32. Zheng Chen & Jiapeng Xiao & Xing Shu & Shiquan Shen & Jiangwei Shen & Yonggang Liu, 2020. "Model-Based Adaptive Joint Estimation of the State of Charge and Capacity for Lithium–Ion Batteries in Their Entire Lifespan," Energies, MDPI, vol. 13(6), pages 1-15, March.
  33. Kong, Jin-zhen & Yang, Fangfang & Zhang, Xi & Pan, Ershun & Peng, Zhike & Wang, Dong, 2021. "Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries," Energy, Elsevier, vol. 223(C).
  34. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).
  35. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.
  36. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  37. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.
  38. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  39. Yan, Lisen & Peng, Jun & Gao, Dianzhu & Wu, Yue & Liu, Yongjie & Li, Heng & Liu, Weirong & Huang, Zhiwu, 2022. "A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery," Energy, Elsevier, vol. 243(C).
  40. Zheng, Yuejiu & Qin, Chao & Lai, Xin & Han, Xuebing & Xie, Yi, 2019. "A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  41. Tian, Yu & Lin, Cheng & Li, Hailong & Du, Jiuyu & Xiong, Rui, 2021. "Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods," Applied Energy, Elsevier, vol. 300(C).
  42. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
  43. Tang, Aihua & Huang, Yukun & Xu, Yuchen & Hu, Yuanzhi & Yan, Fuwu & Tan, Yong & Jin, Xin & Yu, Quanqing, 2024. "Data-physics-driven estimation of battery state of charge and capacity," Energy, Elsevier, vol. 294(C).
  44. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation," Energy, Elsevier, vol. 207(C).
  45. Liu, Chenghao & Deng, Zhongwei & Zhang, Xiaohong & Bao, Huanhuan & Cheng, Duanqian, 2024. "Battery state of health estimation across electrochemistry and working conditions based on domain adaptation," Energy, Elsevier, vol. 297(C).
  46. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
  47. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
  48. Sun, Jinlei & Tang, Yong & Ye, Jilei & Jiang, Tao & Chen, Saihan & Qiu, Shengshi, 2022. "A novel capacity and initial discharge electric quantity estimation method for LiFePO4 battery pack based on OCV curve partial reconstruction," Energy, Elsevier, vol. 243(C).
  49. Deng, Zhongwei & Xu, Le & Liu, Hongao & Hu, Xiaosong & Duan, Zhixuan & Xu, Yu, 2023. "Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles," Applied Energy, Elsevier, vol. 339(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.