IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v118y2017icp1304-1312.html
   My bibliography  Save this item

Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Kaya, Hüseyin & Alkasem, Mohanad & Arslan, Kamil, 2020. "Effect of nanoparticle shape of Al2O3/Pure Water nanofluid on evacuated U-Tube solar collector efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 267-284.
  2. Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
  3. Choudhary, Suraj & Sachdeva, Anish & Kumar, Pramod, 2020. "Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1160-1170.
  4. Ozsoy, Ahmet & Corumlu, Vahit, 2018. "Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications," Renewable Energy, Elsevier, vol. 122(C), pages 26-34.
  5. Tembhare, Saurabh P. & Barai, Divya P. & Bhanvase, Bharat A., 2022. "Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
  6. Kaya, Hüseyin & Arslan, Kamil & Eltugral, Nurettin, 2018. "Experimental investigation of thermal performance of an evacuated U-Tube solar collector with ZnO/Etylene glycol-pure water nanofluids," Renewable Energy, Elsevier, vol. 122(C), pages 329-338.
  7. Gholipour, Shayan & Afrand, Masoud & Kalbasi, Rasool, 2020. "Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: Introducing helical coil and spiral tube adsorbent tubes," Renewable Energy, Elsevier, vol. 151(C), pages 772-781.
  8. Sana Said & Sofiene Mellouli & Talal Alqahtani & Salem Algarni & Ridha Ajjel & Kaouther Ghachem & Lioua Kolsi, 2023. "An Experimental Comparison of the Performance of Various Evacuated Tube Solar Collector Designs," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  9. Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
  10. Sharafeldin, Mahmoud Ahmed & Gróf, Gyula & Mahian, Omid, 2017. "Experimental study on the performance of a flat-plate collector using WO3/Water nanofluids," Energy, Elsevier, vol. 141(C), pages 2436-2444.
  11. Akram, Naveed & Montazer, Elham & Kazi, S.N. & Soudagar, Manzoore Elahi M. & Ahmed, Waqar & Zubir, Mohd Nashrul Mohd & Afzal, Asif & Muhammad, Mohd Ridha & Ali, Hafiz Muhammad & Márquez, Fausto Pedro , 2021. "Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids," Energy, Elsevier, vol. 227(C).
  12. Zhang, H. & Yang, H. & Chen, H.J. & Du, X. & Wen, D. & Wu, H., 2017. "Photothermal conversion characteristics of gold nanoparticles under different filter conditions," Energy, Elsevier, vol. 141(C), pages 32-39.
  13. Nakhchi, M.E. & Hatami, M. & Rahmati, M., 2021. "A numerical study on the effects of nanoparticles and stair fins on performance improvement of phase change thermal energy storages," Energy, Elsevier, vol. 215(PA).
  14. Sharafeldin, M.A. & Gróf, Gyula, 2019. "Efficiency of evacuated tube solar collector using WO3/Water nanofluid," Renewable Energy, Elsevier, vol. 134(C), pages 453-460.
  15. Sheikholeslami, M. & Ghasemian, Mehran & Dehghan, Maziar, 2024. "Numerical simulation and Enviro-economic examination of Photovoltaic system in presence of complex shape of tube equipped with turbulator," Renewable Energy, Elsevier, vol. 231(C).
  16. Tong, Yijie & Boldoo, Tsogtbilegt & Ham, Jeonggyun & Cho, Honghyun, 2020. "Improvement of photo-thermal energy conversion performance of MWCNT/Fe3O4 hybrid nanofluid compared to Fe3O4 nanofluid," Energy, Elsevier, vol. 196(C).
  17. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
  18. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
  19. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
  20. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
  21. Choi, Tae Jong & Kim, Sung Hyoun & Jang, Seok Pil & Lin, Lingnan & Kedzierski, M.A., 2020. "Aqueous nanofluids containing paraffin-filled MWCNTs for improving effective specific heat and extinction coefficient," Energy, Elsevier, vol. 210(C).
  22. Gong, Jing-hu & Zhang, Zhi-peng & Sun, Zhi-hao & Wang, Yu-guang & Wang, Jun & Lund, Peter D., 2023. "Thermal and thermo-mechanical analysis of a novel pass-through all-glass evacuated collector tube by combining experiment with numerical simulation," Energy, Elsevier, vol. 277(C).
  23. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
  24. Woobin Kang & Yunchan Shin & Honghyun Cho, 2017. "Economic Analysis of Flat-Plate and U-Tube Solar Collectors Using an Al 2 O 3 Nanofluid," Energies, MDPI, vol. 10(11), pages 1-15, November.
  25. Fan, Man & Liang, Hongbo & You, Shijun & Zhang, Huan & Zheng, Wandong & Xia, Junbao, 2018. "Heat transfer analysis of a new volumetric based receiver for parabolic trough solar collector," Energy, Elsevier, vol. 142(C), pages 920-931.
  26. Wang, Jin & Yang, Xian & Klemeš, Jiří Jaromír & Tian, Ke & Ma, Ting & Sunden, Bengt, 2023. "A review on nanofluid stability: preparation and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  27. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.