IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v54y2013icp125-136.html
   My bibliography  Save this item

Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Olonscheck, Mady & Walther, Carsten & Lüdeke, Matthias & Kropp, Jürgen P., 2015. "Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands," Energy, Elsevier, vol. 90(P1), pages 560-569.
  2. Wei JIANG & Xuhui ZHANG, 2017. "Energy Labeling System of Urban Residential Buildings: Market Effect and Operating Mechanism — A Case Study of Energy-Saving Renovations in the Netherlands and Its Implications," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-14, December.
  3. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook & Hooman Tahayori & Hexin Zhang, 2021. "Uncertainties in Non-Domestic Energy Performance Certificate Generating in the UK," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
  4. Heesen, Florian & Madlener, Reinhard, 2016. "Consumer Behavior in Energy-Efficient Homes: The Limited Merits of Energy Performance Ratings as Benchmarks," FCN Working Papers 17/2016, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
  5. Balaras, Constantinos A. & Dascalaki, Elena G. & Droutsa, Kalliopi G. & Kontoyiannidis, Simon, 2016. "Empirical assessment of calculated and actual heating energy use in Hellenic residential buildings," Applied Energy, Elsevier, vol. 164(C), pages 115-132.
  6. Bai, Yefei & Yu, Cong & Pan, Wei, 2024. "Systematic examination of energy performance gap in low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  7. Yu, Lu & Wu, Shuang & Jiang, Lu & Ding, Bowenpeng & Shi, Xiaonan, 2022. "Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China," Energy Policy, Elsevier, vol. 168(C).
  8. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
  9. João Delgado & Ana Mafalda Matos & Ana Sofia Guimarães, 2022. "Linking Indoor Thermal Comfort with Climate, Energy, Housing, and Living Conditions: Portuguese Case in European Context," Energies, MDPI, vol. 15(16), pages 1-22, August.
  10. Rossano Albatici & Alessia Gadotti & Christian Baldessari & Michela Chiogna, 2016. "A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
  11. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
  12. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
  13. Koo, Choongwan & Hong, Taehoon, 2015. "Development of a dynamic operational rating system in energy performance certificates for existing buildings: Geostatistical approach and data-mining technique," Applied Energy, Elsevier, vol. 154(C), pages 254-270.
  14. Abokersh, Mohamed Hany & Gangwar, Sachin & Spiekman, Marleen & Vallès, Manel & Jiménez, Laureano & Boer, Dieter, 2021. "Sustainability insights on emerging solar district heating technologies to boost the nearly zero energy building concept," Renewable Energy, Elsevier, vol. 180(C), pages 893-913.
  15. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
  16. Gert van Wyk & Vinessa Naidoo & E. Innocents Edoun, 2021. "Guiding Principles for Establishing Energy Consumption Reduction and Increase Production Performance in Manufacturing," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 502-515.
  17. Curtis, John & Pentecost, Anne, 2015. "Household fuel expenditure and residential building energy efficiency ratings in Ireland," Energy Policy, Elsevier, vol. 76(C), pages 57-65.
  18. Hårsman, Björn & Daghbashyan, Zara & Chaudhary, Parth, 2016. "On the Quality and Impact of Residential Energy Performance Certificates," Working Paper Series in Economics and Institutions of Innovation 429, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  19. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
  20. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
  21. Evi Lambie & Dirk Saelens, 2020. "Identification of the Building Envelope Performance of a Residential Building: A Case Study," Energies, MDPI, vol. 13(10), pages 1-28, May.
  22. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Juan José Sendra & Susan Roaf, 2018. "Rethinking User Behaviour Comfort Patterns in the South of Spain—What Users Really Do," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
  23. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
  24. Heidi Paola Díaz-Hernández & Pablo René Torres-Hernández & Karla María Aguilar-Castro & Edgar Vicente Macias-Melo & María José Jiménez, 2020. "Data-Based RC Dynamic Modelling Incorporating Physical Criteria to Obtain the HLC of In-Use Buildings: Application to a Case Study," Energies, MDPI, vol. 13(2), pages 1-22, January.
  25. Majcen, Daša & Itard, Laure & Visscher, Henk, 2013. "Actual and theoretical gas consumption in Dutch dwellings: What causes the differences?," Energy Policy, Elsevier, vol. 61(C), pages 460-471.
  26. Palladino, Domenico, 2023. "Energy performance gap of the Italian residential building stock: Parametric energy simulations for theoretical deviation assessment from standard conditions," Applied Energy, Elsevier, vol. 345(C).
  27. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
  28. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
  29. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
  30. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  31. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
  32. Ozarisoy, B. & Altan, H., 2022. "Significance of occupancy patterns and habitual household adaptive behaviour on home-energy performance of post-war social-housing estate in the South-eastern Mediterranean climate: Energy policy desi," Energy, Elsevier, vol. 244(PB).
  33. Jan H. Miedema & Henny J. Van der Windt & Henri C. Moll, 2018. "Opportunities and Barriers for Biomass Gasification for Green Gas in the Dutch Residential Sector," Energies, MDPI, vol. 11(11), pages 1-20, November.
  34. Charlier, Dorothée, 2021. "Explaining the energy performance gap in buildings with a latent profile analysis," Energy Policy, Elsevier, vol. 156(C).
  35. Chaudhuri, Kausik & Huaccha, Gissell, 2023. "Who bears the energy cost? Local income deprivation and the household energy efficiency gap," Energy Economics, Elsevier, vol. 127(PA).
  36. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
  37. Majcen, Daša & Itard, Laure & Visscher, Henk, 2016. "Actual heating energy savings in thermally renovated Dutch dwellings," Energy Policy, Elsevier, vol. 97(C), pages 82-92.
  38. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
  39. Mutl, Jan & Seyler, Nicolas, 2019. "Going Beyond Buildings: Mindfulness and Real Estate User Behavior," MPRA Paper 107062, University Library of Munich, Germany.
  40. Ardeshir Mahdavi & Christiane Berger & Hadeer Amin & Eleni Ampatzi & Rune Korsholm Andersen & Elie Azar & Verena M. Barthelmes & Matteo Favero & Jakob Hahn & Dolaana Khovalyg & Henrik N. Knudsen & Ale, 2021. "The Role of Occupants in Buildings’ Energy Performance Gap: Myth or Reality?," Sustainability, MDPI, vol. 13(6), pages 1-44, March.
  41. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
  42. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
  43. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
  44. Nick ten Caat & Luuk Graamans & Martin Tenpierik & Andy van den Dobbelsteen, 2021. "Towards Fossil Free Cities—A Supermarket, Greenhouse & Dwelling Integrated Energy System as an Alternative to District Heating: Amsterdam Case Study," Energies, MDPI, vol. 14(2), pages 1-33, January.
  45. Mahapatra, K., 2015. "Energy use and CO2 emission of new residential buildings built under specific requirements – The case of Växjö municipality, Sweden," Applied Energy, Elsevier, vol. 152(C), pages 31-38.
  46. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
  47. Fouladvand, Javanshir & Ateş, Emre & Sarı, Yasin & Okur, Özge, 2024. "Does the availability of alternative energy choices lead to more environmentally friendly outcomes? The case of thermal energy communities and natural gas consumption," Applied Energy, Elsevier, vol. 374(C).
  48. Hong, Taehoon & Koo, Choongwan & Kim, Daeho & Lee, Minhyun & Kim, Jimin, 2015. "An estimation methodology for the dynamic operational rating of a new residential building using the advanced case-based reasoning and stochastic approaches," Applied Energy, Elsevier, vol. 150(C), pages 308-322.
  49. Nägeli, Claudio & Jakob, Martin & Catenazzi, Giacomo & Ostermeyer, York, 2020. "Policies to decarbonize the Swiss residential building stock: An agent-based building stock modeling assessment," Energy Policy, Elsevier, vol. 146(C).
  50. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
  51. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2020. "Impact of Adding Comfort Cooling Systems on the Energy Consumption and EPC Rating of an Existing UK Hotel," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
  52. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
  53. Dorothée Charlier, 2021. "Explaining the energy performance gap in buildings with a latent profile analysis," Post-Print hal-03894155, HAL.
  54. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.