IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i10p990-d79693.html
   My bibliography  Save this article

A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale

Author

Listed:
  • Rossano Albatici

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Alessia Gadotti

    (Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy)

  • Christian Baldessari

    (Baldessari Ingegneri Srl, Strada del Dòs Grum 18, 38123 Trento, Italy)

  • Michela Chiogna

    (Istituto Trentino per l’Edilizia Abitativa SpA, Via Guardini 22, 38121 Trento, Italy)

Abstract

Buildings in Europe account for 40% of total primary energy consumption and 36% of CO 2 emissions. Nearly one-half of the building stock was built before modern energy efficiency standards and need urgent renovation. Urban retrofitting has emerged as a crucial factor for bringing about a radical change, the new construction rate being lower than 1%. Nevertheless, an accepted and consolidated methodology for refurbishing the existing housing stock is still lacking. The study presents an operating methodology for the optimization of the retrofitting process, based on energy efficiency and cost-effectiveness, as well as users’ comfort, in the building asset of ITEA SpA, the social housing institute for the Province of Trento (Italy), which manages more than 600 buildings. The research consists of the following stages: (1) definition of building classes, similar in age, dimension, typology, construction system and location; (2) analysis of plant systems and recognition of cases significant for classifying buildings in term of energy class; (3) identification of possible improvements and related cost-benefits; and (4) extension of the results to the whole building class. A tool is here proposed, intended for use by ITEA in order to set medium- and long-term plans. The tool does not consider only the effective sustainability of the controlling body intervention but also the final users’ full satisfaction.

Suggested Citation

  • Rossano Albatici & Alessia Gadotti & Christian Baldessari & Michela Chiogna, 2016. "A Decision Making Tool for a Comprehensive Evaluation of Building Retrofitting Actions at the Regional Scale," Sustainability, MDPI, vol. 8(10), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:990-:d:79693
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/10/990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/10/990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ariel Dinar & Robert Mendelsohn (ed.), 2011. "Handbook on Climate Change and Agriculture," Books, Edward Elgar Publishing, number 13942.
    2. Majcen, D. & Itard, L.C.M. & Visscher, H., 2013. "Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications," Energy Policy, Elsevier, vol. 54(C), pages 125-136.
    3. Albatici, Rossano & Tonelli, Arnaldo M. & Chiogna, Michela, 2015. "A comprehensive experimental approach for the validation of quantitative infrared thermography in the evaluation of building thermal transmittance," Applied Energy, Elsevier, vol. 141(C), pages 218-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Aranda & Ignacio Zabalza & Andrea Conserva & Gema Millán, 2017. "Analysis of Energy Efficiency Measures and Retrofitting Solutions for Social Housing Buildings in Spain as a Way to Mitigate Energy Poverty," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    2. Mikael Mangold & Magnus Österbring & Conny Overland & Tim Johansson & Holger Wallbaum, 2018. "Building Ownership, Renovation Investments, and Energy Performance—A Study of Multi-Family Dwellings in Gothenburg," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    3. Zhou, Jinzhi & Zhu, Zishang & Zhao, Xudong & Yuan, Yanping & Fan, Yi & Myers, Steve, 2020. "Theoretical and experimental study of a novel solar indirect-expansion heat pump system employing mini channel PV/T and thermal panels," Renewable Energy, Elsevier, vol. 151(C), pages 674-686.
    4. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    5. Joanne Louise Patterson, 2016. "Evaluation of a Regional Retrofit Programme to Upgrade Existing Housing Stock to Reduce Carbon Emissions, Fuel Poverty and Support the Local Supply Chain," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    6. Mohammed Seddiki & Amar Bennadji & Richard Laing & David Gray & Jamal M. Alabid, 2021. "Review of Existing Energy Retrofit Decision Tools for Homeowners," Sustainability, MDPI, vol. 13(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    3. Massetti, Emanuele & Mendelsohn, Robert, 2017. "Do Temperature Thresholds Threaten American Farmland?," EIA: Climate Change: Economic Impacts and Adaptation 263482, Fondazione Eni Enrico Mattei (FEEM).
    4. Curtis, John & Pentecost, Anne, 2015. "Household fuel expenditure and residential building energy efficiency ratings in Ireland," Energy Policy, Elsevier, vol. 76(C), pages 57-65.
    5. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    6. Emanuele Massetti & Robert Mendelsohn, 2011. "Estimating Ricardian Models With Panel Data," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 301-319.
    7. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
    8. Doo Sung Choi & Myeong Jin Ko, 2017. "Comparison of Various Analysis Methods Based on Heat Flowmeters and Infrared Thermography Measurements for the Evaluation of the In Situ Thermal Transmittance of Opaque Exterior Walls," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    10. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    11. Kaandorp, Chelsea & Miedema, Tes & Verhagen, Jeroen & van de Giesen, Nick & Abraham, Edo, 2022. "Reducing committed emissions of heating towards 2050: Analysis of scenarios for the insulation of buildings and the decarbonisation of electricity generation," Applied Energy, Elsevier, vol. 325(C).
    12. Seo-Hoon Kim & Jung-Hun Lee & Jong-Hun Kim & Seung-Hwan Yoo & Hak-Geun Jeong, 2018. "The Feasibility of Improving the Accuracy of In Situ Measurements in the Air-Surface Temperature Ratio Method," Energies, MDPI, vol. 11(7), pages 1-18, July.
    13. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    14. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    15. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    16. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal.
    17. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    18. Menapace, Luisa & Colson, Greg & Raffaell, Roberta, 2014. "Farmers' Climate Change Risk Perceptions: An Application of the Exchangeability Method," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 183086, European Association of Agricultural Economists.
    19. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    20. O'Grady, Małgorzata & Lechowska, Agnieszka A. & Harte, Annette M., 2017. "Quantification of heat losses through building envelope thermal bridges influenced by wind velocity using the outdoor infrared thermography technique," Applied Energy, Elsevier, vol. 208(C), pages 1038-1052.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:10:p:990-:d:79693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.