IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2969-d179676.html
   My bibliography  Save this article

Opportunities and Barriers for Biomass Gasification for Green Gas in the Dutch Residential Sector

Author

Listed:
  • Jan H. Miedema

    (Center for Energy and Environmental Sciences, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 6, 9747 AG Groningen, The Netherlands)

  • Henny J. Van der Windt

    (Science and Society Group, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 6, 9747 AG Groningen, The Netherlands)

  • Henri C. Moll

    (Center for Energy and Environmental Sciences, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 6, 9747 AG Groningen, The Netherlands)

Abstract

The Dutch residential sector is locked-in into natural gas for the supply of heat. The expected depletion of national reserves and induced earthquakes in the production area are reasons to aim to escape this lock-in. The Dutch government and key players in the natural gas sector have expressed large green gas ambitions. This paper explores the opportunities and barriers of biomass gasification for green gas production and application in the residential sector. The Technological Innovation Systems and Multi-Level Perspective were applied as sustainability transition frameworks to explore the current technological state of biomass gasification and the developments in the residential sector. Four limitations were observed from a supply perspective; little financial space for demonstration plants, absence of technology specific policy, lagging market developments and insecurities related to biomass availability. On the demand side, clear barriers hampering change are observed, providing large opportunities for green gas. Key players in the natural gas regime take no substantial responsibility, despite their potential ability to contribute to overcoming systemic barriers. Therefore, this research concludes that the current green gas ambitions set by the Dutch government are not feasible and that the government may address this with technology specific policy, substantial research and development subsidies and funding.

Suggested Citation

  • Jan H. Miedema & Henny J. Van der Windt & Henri C. Moll, 2018. "Opportunities and Barriers for Biomass Gasification for Green Gas in the Dutch Residential Sector," Energies, MDPI, vol. 11(11), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2969-:d:179676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    2. Vringer, Kees & van Middelkoop, Manon & Hoogervorst, Nico, 2016. "Saving energy is not easy," Energy Policy, Elsevier, vol. 93(C), pages 23-32.
    3. Andre Faaij, 2006. "Modern Biomass Conversion Technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 335-367, March.
    4. Hellsmark, Hans & Jacobsson, Staffan, 2012. "Realising the potential of gasified biomass in the European Union—Policy challenges in moving from demonstration plants to a larger scale diffusion," Energy Policy, Elsevier, vol. 41(C), pages 507-518.
    5. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    6. Kirkels, Arjan F. & Verbong, Geert P.J., 2011. "Biomass gasification: Still promising? A 30-year global overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 471-481, January.
    7. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    8. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars," Science and Public Policy, Oxford University Press, vol. 39(1), pages 74-87, February.
    9. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Corrigendum to 'Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars'," Science and Public Policy, Oxford University Press, vol. 39(6), pages 842-842, December.
    10. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    11. repec:dau:papers:123456789/200 is not listed on IDEAS
    12. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    13. Schipperus, Ouren T. & Mulder, Machiel, 2015. "The effectiveness of policies to transform a gas-exporting country into a gas-transit country: The case of The Netherlands," Energy Policy, Elsevier, vol. 84(C), pages 117-127.
    14. Majcen, D. & Itard, L.C.M. & Visscher, H., 2013. "Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications," Energy Policy, Elsevier, vol. 54(C), pages 125-136.
    15. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    16. van Middelkoop, Manon & Vringer, Kees & Visser, Hans, 2017. "Are Dutch residents ready for a more stringent policy to enhance the energy performance of their homes?," Energy Policy, Elsevier, vol. 105(C), pages 269-282.
    17. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    18. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maéva Dang & Andy van den Dobbelsteen & Paul Voskuilen, 2024. "A Parametric Modelling Approach for Energy Retrofitting Heritage Buildings: The Case of Amsterdam City Centre," Energies, MDPI, vol. 17(5), pages 1-20, February.
    2. Izabella Maj, 2022. "Significance and Challenges of Poultry Litter and Cattle Manure as Sustainable Fuels: A Review," Energies, MDPI, vol. 15(23), pages 1-17, November.
    3. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    4. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Andrea Porcu & Stefano Sollai & Davide Marotto & Mauro Mureddu & Francesca Ferrara & Alberto Pettinau, 2019. "Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System," Energies, MDPI, vol. 12(3), pages 1-17, February.
    6. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
    3. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    4. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    5. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    6. Alexandra Gottinger & Luana Ladu & Rainer Quitzow, 2020. "Studying the Transition towards a Circular Bioeconomy—A Systematic Literature Review on Transition Studies and Existing Barriers," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    7. Kieft, Alco & Harmsen, Robert & Hekkert, Marko P., 2020. "Toward ranking interventions for Technological Innovation Systems via the concept of Leverage Points," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    9. Haddad, Carolina R. & Bergek, Anna, 2023. "Towards an integrated framework for evaluating transformative innovation policy," Research Policy, Elsevier, vol. 52(2).
    10. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    11. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    12. Wesseling, J.H. & Lechtenböhmer, S. & Åhman, M. & Nilsson, L.J. & Worrell, E. & Coenen, L., 2017. "The transition of energy intensive processing industries towards deep decarbonization: Characteristics and implications for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1303-1313.
    13. Geddes, Anna & Schmidt, Tobias S., 2020. "Integrating finance into the multi-level perspective: Technology niche-finance regime interactions and financial policy interventions," Research Policy, Elsevier, vol. 49(6).
    14. Edler, Jakob & Köhler, Jonathan Hugh & Wydra, Sven & Salas-Gironés, Edgar & Schiller, Katharina & Braun, Annette, 2021. "Dimensions of systems and transformations: Towards an integrated framework for system transformations," Working Papers "Sustainability and Innovation" S03/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    15. Söderholm, Patrik & Hellsmark, Hans & Frishammar, Johan & Hansson, Julia & Mossberg, Johanna & Sandström, Annica, 2019. "Technological development for sustainability: The role of network management in the innovation policy mix," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 309-323.
    16. Hermans, Frans, 2018. "The potential contribution of transition theory to the analysis of bioclusters and their role in the transition to a bioeconomy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2), pages 265-276.
    17. Torres-Avila, Angelica & Aguilar-Ávila, Jorge & Santoyo-Cortés, Vinicio Horacio & Martínez-González, Enrique Genaro & Aguilar-Gallegos, Norman, 2022. "Innovation in the pineapple value chain in Mexico: Explaining the global adoption process of the MD-2 hybrid," Agricultural Systems, Elsevier, vol. 198(C).
    18. Verburg, René W. & Verberne, Emma & Negro, Simona O., 2022. "Accelerating the transition towards sustainable agriculture: The case of organic dairy farming in the Netherlands," Agricultural Systems, Elsevier, vol. 198(C).
    19. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    20. Rohe, Sebastian & Oltmer, Marie & Wolter, Hendrik & Gmeiner, Nina & Tschersich , Julia, 2022. "Forever Niche: Why do organic vegetable varieties not diffuse?," Papers in Innovation Studies 2022/8, Lund University, CIRCLE - Centre for Innovation Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2969-:d:179676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.