My bibliography
Save this item
Decomposition of industrial energy consumption : Some methodological and application issues
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
- Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
- Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Coal and economic development in Pakistan: A necessity of energy source," Energy, Elsevier, vol. 207(C).
- Sudhakara Reddy, B. & Kumar Ray, Binay, 2011.
"Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector,"
Energy Policy, Elsevier, vol. 39(11), pages 7234-7243.
- Binay Kumar Ray & B. Sudhakara Reddy, 2008. "Understanding industrial energy use - Physical energy intensity changes in Indian manufacturing sector," Energy Working Papers 22328, East Asian Bureau of Economic Research.
- B. Sudhakara Reddy & Binay Kumar Ray, 2010. "Understanding Industrial Energy Use: Physical Energy Intensity Changes in Indian Manufacturing Sector," Working Papers id:2397, eSocialSciences.
- Binay Kumar Ray & B. Sudhakara Reddy, 2008. "Understanding industrial energy use: Physical energy intensity changes in Indian manufacturing sector," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2008-011, Indira Gandhi Institute of Development Research, Mumbai, India.
- Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
- Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
- Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2020.
"Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation,"
American Economic Journal: Economic Policy, American Economic Association, vol. 12(4), pages 244-274, November.
- Stephen P. Holland & Erin T. Mansur & Nicholas Muller & Andrew J. Yates, 2018. "Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation," NBER Working Papers 25339, National Bureau of Economic Research, Inc.
- Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
- Jimenez, Raul & Mercado, Jorge, 2014.
"Energy intensity: A decomposition and counterfactual exercise for Latin American countries,"
Energy Economics, Elsevier, vol. 42(C), pages 161-171.
- Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
- González, P.Fernández & Suárez, R.Pérez, 2003. "Decomposing the variation of aggregate electricity intensity in Spanish industry," Energy, Elsevier, vol. 28(2), pages 171-184.
- Binay Kumar Ray & B.Sudhakara Reddy, 2007.
"Decomposition of Energy Consumption and Energy Intensity in Indian Manufacturing Industries,"
Energy Working Papers
22327, East Asian Bureau of Economic Research.
- Binay Kumar Ray & B. Sudhakara Reddy, 2007. "Decomposition of energy consumption and energy intensity in Indian manufacturing industries," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2007-020, Indira Gandhi Institute of Development Research, Mumbai, India.
- Zhang, Zhong Xiang, 2001.
"Why has the energy intensity fallen in China's industrial sector in the 1990s?: the relative importance of structural change and intensity change,"
CDS Research Reports
200111, University of Groningen, Centre for Development Studies (CDS).
- Zhang, Zhong Xiang, 2001. "Why has the energy intensity fallen in China's industrial sector in the 1990s? : the relative importance of structural change and intensity change," CCSO Working Papers 200105, University of Groningen, CCSO Centre for Economic Research.
- Zhang, ZhongXiang, 2003.
"Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change,"
Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
- Zhang, ZhongXiang, 2001. "Why did the energy intensity fall in China's industrial sector in the 1990s? the relative importance of structural change and intensity change," MPRA Paper 13149, University Library of Munich, Germany.
- Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
- Andrés, Lidia & Padilla, Emilio, 2015.
"Energy intensity in road freight transport of heavy goods vehicles in Spain,"
Energy Policy, Elsevier, vol. 85(C), pages 309-321.
- Lidia Andres Delgado & Emilio Padilla Rosa, 2014. "Energy Intensity in Road Freight Transport of Heavy Goods Vehicles in Spain," Working Papers wpdea1401, Department of Applied Economics at Universitat Autonoma of Barcelona.
- Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
- de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
- Chung, Hyun-Sik & Rhee, Hae-Chun, 2001. "A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries," Energy, Elsevier, vol. 26(1), pages 15-30.
- Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
- Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
- Taeyoung Jin & Bongseok Choi, 2020. "Sectoral Decomposition of Korea’s Energy Consumption by Global Value Chain Dimensions," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
- Wang, Changjian & Miao, Zhuang & Chen, Xiaodong & Cheng, Yu, 2021. "Factors affecting changes of greenhouse gas emissions in Belt and Road countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Marcel Kohler, 2008. "The impact of international trade on changing patterns of energy use in South African industry," Working Papers 088, Economic Research Southern Africa.
- Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
- Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
- Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
- Santosh Kumar SAHU & K NARAYANAN, 2010.
"Decomposition Of Industrial Energy Consumption In Indian Manufacturing The Energy Intensity Approach,"
Journal of Advanced Research in Management, ASERS Publishing, vol. 1(1), pages 22-38.
- Sahu, Santosh & Narayanan, K, 2010. "Decomposition of Industrial Energy Consumption in Indian Manufacturing : The Energy Intensity Approach," MPRA Paper 21719, University Library of Munich, Germany.
- Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
- Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
- Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
- Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
- Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
- Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
- Eric Fosu Oteng-Abayie & Foster Awindolla Asaki & Maame Esi Eshun & Eric Abokyi, 2022. "Decomposition of the decoupling of CO2 emissions from economic growth in Ghana," Future Business Journal, Springer, vol. 8(1), pages 1-13, December.
- repec:dgr:rugccs:200105 is not listed on IDEAS
- Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
- Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
- Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
- Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
- Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
- Schipper, Lee & Ting, Michael & Khrushch, Marta & Golove, William, 1997. "The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis," Energy Policy, Elsevier, vol. 25(7-9), pages 651-672.
- Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
- Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
- Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
- Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
- Agnolucci, Paolo & Ekins, Paul & Iacopini, Giorgia & Anderson, Kevin & Bows, Alice & Mander, Sarah & Shackley, Simon, 2009. "Different scenarios for achieving radical reduction in carbon emissions: A decomposition analysis," Ecological Economics, Elsevier, vol. 68(6), pages 1652-1666, April.
- Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
- Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
- Li, Hongqi & Lu, Yue & Zhang, Jun & Wang, Tianyi, 2013. "Trends in road freight transportation carbon dioxide emissions and policies in China," Energy Policy, Elsevier, vol. 57(C), pages 99-106.
- Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
- Reza Darisavi Bahmanshir & Ali Akbar Naji Meidani & Mahdi Khodaparast Mashhadi & Narges Salehnia, 2018. "Reversibility Test of Oil Demand Function of OECD Countries Importing Oil from Iran with an Emphasis on Technological and Environmental Considerations: Symmetric and Asymmetric Models," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 132-139.
- Yu, Mingchao & Yu, Ran & Tang, Yuxuan & Liu, Zhen, 2020. "Empirical study on the impact of China's metro services on urban transportation energy consumption," Research in Transportation Economics, Elsevier, vol. 80(C).
- Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
- Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
- Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
- P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
- Meiryani Meiryani & Leny Suzan & Jajat Sudrajat & Watcharin Joemsittiprasert, 2020. "Impact of Accounting Information System and Intensity of Energy on Energy Consumption in Sugar Industry of Indonesia: Moderating Role of Effectiveness of Supply," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 647-654.
- Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
- Alcantara, Vicent & Roca, Jordi, 1995. "Energy and CO2 emissions in Spain : Methodology of analysis and some results for 1980-1990," Energy Economics, Elsevier, vol. 17(3), pages 221-230, July.
- Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
- Ozawa, Leticia & Sheinbaum, Claudia & Martin, Nathan & Worrell, Ernst & Price, Lynn, 2002. "Energy use and CO2 emissions in Mexico's iron and steel industry," Energy, Elsevier, vol. 27(3), pages 225-239.
- Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
- Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
- Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
- Dana Dluhosova & Karolina Lisztwanova & Antonín Poncik & Iveta Ratmanová & Zdenek Zmeskal, 2022. "Dynamic and Static Decomposition Analysis of the Czech Automotive Production Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 84-95.
- Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
- Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
- Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
- Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
- Arto, Iñaki & Ansuategui Cobo, José Alberto, 2003. "La evolución de la intensidad energética de la industria vasca entre 1982-2001: Un análisis de descomposición," IKERLANAK 2003-07, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
- Sun, J.W & Ang, B.W, 2000. "Some properties of an exact energy decomposition model," Energy, Elsevier, vol. 25(12), pages 1177-1188.
- Shumin Zhang & Yongze Lv & Jian Xu & Baolei Zhang, 2023. "Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
- Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
- Nanduri, Mallika & Nyboer, John & Jaccard, Mark, 2002. "Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector," Energy Policy, Elsevier, vol. 30(2), pages 151-163, January.
- Kulshreshtha, Mudit & Parikh, Jyoti K., 2001. "A study of productivity in the Indian coal sector," Energy Policy, Elsevier, vol. 29(9), pages 701-713, July.
- Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
- Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021.
"Driving forces of CO2 emissions and energy intensity in Colombia,"
Energy Policy, Elsevier, vol. 151(C).
- Lourdes Isabel Patiño & Vicent Alcántara Escolano & Emilio Padilla Rosa, 2019. "Driving forces of CO2 emissions and energy intensity in Colombia," Working Papers wpdea1905, Department of Applied Economics at Universitat Autonoma of Barcelona.
- Li, Juan & Ma, Shaoqi & Qu, Yi & Wang, Jiamin, 2023. "The impact of artificial intelligence on firms’ energy and resource efficiency: Empirical evidence from China," Resources Policy, Elsevier, vol. 82(C).
- Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
- Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
- Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
- Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013.
"Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis,"
Applied Energy, Elsevier, vol. 101(C), pages 323-332.
- Jing-Li Fan & Hua Liao & Qiao-Mei Liang & Hirokazu Tatano & Chun-Feng Liu & Yi-Ming Wei, 2011. "Residential carbon emission evolutions in urban-rural divided China: An end-use and behavior analysis," CEEP-BIT Working Papers 16, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
- Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jörn Altmann, 2015.
"Driving Forces of CO 2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector,"
Sustainability, MDPI, vol. 7(12), pages 1-22, December.
- Yeongjun Yeo & Dongnyok Shim & Jeong-Dong Lee & Jorn Altmann, 2015. "Driving Forces of CO2 Emissions in Emerging Countries: LMDI Decomposition Analysis on China and India’s Residential Sector," TEMEP Discussion Papers 2015128, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Dec 2015.
- Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
- Ang, B.W. & Mu, A.R. & Zhou, P., 2010. "Accounting frameworks for tracking energy efficiency trends," Energy Economics, Elsevier, vol. 32(5), pages 1209-1219, September.
- Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
- repec:dgr:rugcds:200111 is not listed on IDEAS
- Ortega-Ruiz, G. & Mena-Nieto, A. & Golpe, A.A. & García-Ramos, J.E., 2022. "CO2 emissions and causal relationships in the six largest world emitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Xiaolu Du & Yingshan Sun & Xiaoyi Zhang & Rui Zhang, 2023. "Research on the Impact of Energy Price on Carbon Emission Intensity of China—An Empirical Study Based on LMDI Decomposition and Econometric Models," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
- Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
- Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
- Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
- Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
- Hasanbeigi, Ali & Price, Lynn & Fino-Chen, Cecilia & Lu, Hongyou & Ke, Jing, 2013. "Retrospective and prospective decomposition analysis of Chinese manufacturing energy use and policy implications," Energy Policy, Elsevier, vol. 63(C), pages 562-574.
- Bruyn, Sander M. de, 1997. "Explaining the environmental Kuznets Curve: the case of sulphur emissions," Serie Research Memoranda 0013, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
- V.V. Krivorotov & A.V. Kalina & S.E. Erypalov & P.A. Koryakina, 2021. "Energy Efficiency of Russian Copper Companies as a Basis for Ensuring Their Global Competitiveness," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(3), pages 428-460.
- Achão, Carla & Schaeffer, Roberto, 2009. "Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980-2007 period: Measuring the activity, intensity and structure effects," Energy Policy, Elsevier, vol. 37(12), pages 5208-5220, December.
- Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
- Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.