IDEAS home Printed from https://ideas.repec.org/a/srs/jemt00/v1y2010i1p22-38.html
   My bibliography  Save this article

Decomposition Of Industrial Energy Consumption In Indian Manufacturing The Energy Intensity Approach

Author

Listed:
  • Santosh Kumar SAHU
  • K NARAYANAN

Abstract

Increasing energy consumption has been one of the major issues in the environmental and industrial economics in the context of global climate change Recent literature has dealt with several methodological and application issues related to the technique of decomposing changes in industrial energy consumption In this paper we examine these issues in the context of another commonly adopted approach to decomposition of aggregate changes in energy intensity of Indian manufacturing industries The industrial sector accounts for about 37 percent of the total final energy consumption in India Of this the manufacturing sector consumes about 66 percent 2004 05 The manufacturing sector is one of the energy intensive industries among other industries in India The scope of the study includes an empirical analysis of General Parametric Divisia Method This paper follows the energy intensity approach rather the energy consumption approach This method involves decomposition of the aggregate energy intensity index measured in terms of energy consumption per unit of output The analysis also includes a comparison of the time series analysis versus the period wise decomposition The factors considered are changes in production structure and sectoral energy intensities The results of the analysis confirm that the changes in sectoral energy intensity play a greater role in the variation in the total energy intensity of Indian Manufacturing compared to the changes in the production structure of the Industries

Suggested Citation

  • Santosh Kumar SAHU & K NARAYANAN, 2010. "Decomposition Of Industrial Energy Consumption In Indian Manufacturing The Energy Intensity Approach," Journal of Advanced Research in Management, ASERS Publishing, vol. 1(1), pages 22-38.
  • Handle: RePEc:srs:jemt00:v:1:y:2010:i:1:p:22-38
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bossanyi, Ervin, 1979. "UK primary energy consumption and the changing structure of final demand," Energy Policy, Elsevier, vol. 7(3), pages 253-258, September.
    2. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    3. Soytas, Ugur & Sari, Ramazan, 2003. "Energy consumption and GDP: causality relationship in G-7 countries and emerging markets," Energy Economics, Elsevier, vol. 25(1), pages 33-37, January.
    4. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    5. Jenne, C. A. & Cattell, R. K., 1983. "Structural change and energy efficiency in industry," Energy Economics, Elsevier, vol. 5(2), pages 114-123, April.
    6. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    7. Ang, B.W., 1987. "Structural changes and energy-demand forecasting in industry with applications to two newly industrialized countries," Energy, Elsevier, vol. 12(2), pages 101-111.
    8. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suvajit Banerjee, 2019. "Addressing the Drivers of Carbon Emissions Embodied in Indian Exports: An Index Decomposition Analysis," Foreign Trade Review, , vol. 54(4), pages 300-333, November.
    2. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    3. Xiding Chen & Qinghua Huang & Weilun Huang & Xue Li, 2018. "The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    4. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    5. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    6. Bagchi, Prantik & Sahu, Santosh Kumar & Kumar, Ajay & Tan, Kim Hua, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    7. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    8. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    9. Heidari, Hassan & Babaei Balderlou, Saharnaz & Ebrahimi Torki, Mahyar, 2016. "Energy Intensity of GDP: A Nonlinear Estimation of Determinants in Iran," MPRA Paper 79237, University Library of Munich, Germany.
    10. Akbar Ullah & Karim Khan & Munazza Akhtar, 2014. "Energy Intensity: A Decomposition Exercise for Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 53(4), pages 531-549.
    11. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    12. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
    13. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    14. Megha Jain & Simrit Kaur, 2023. "Determinants of Energy Intensity Trends in Indian Metallic Industry: A Firm-level Analysis," Vision, , vol. 27(3), pages 360-375, June.
    15. Govindan, Kannan & Kadziński, Miłosz & Sivakumar, R., 2017. "Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain," Omega, Elsevier, vol. 71(C), pages 129-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    2. Ang, B. W., 1995. "Multilevel decomposition of industrial energy consumption," Energy Economics, Elsevier, vol. 17(1), pages 39-51, January.
    3. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    4. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    5. Shaista Alam & Mohammad Sabihuddin Butt, 2001. "Assessing Energy Consumption and Energy Intensity Changes in Pakistan: An Application of Complete Decomposition Model," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 40(2), pages 135-147.
    6. González, P.Fernández & Suárez, R.Pérez, 2003. "Decomposing the variation of aggregate electricity intensity in Spanish industry," Energy, Elsevier, vol. 28(2), pages 171-184.
    7. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    8. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    9. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    10. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    11. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    12. P. Fernández-González & M. Landajo & M.J. Presno, 2013. "Factors Influencing Changes In Aggregate Energy Consumption. An European Cross-Country Analysis," Regional and Sectoral Economic Studies, Euro-American Association of Economic Development, vol. 13(2), pages 18-30.
    13. Greening, Lorna A. & Davis, William B. & Schipper, Lee & Khrushch, Marta, 1997. "Comparison of six decomposition methods: application to aggregate energy intensity for manufacturing in 10 OECD countries," Energy Economics, Elsevier, vol. 19(3), pages 375-390, July.
    14. Arto, Iñaki & Ansuategui Cobo, José Alberto, 2003. "La evolución de la intensidad energética de la industria vasca entre 1982-2001: Un análisis de descomposición," IKERLANAK 2003-07, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    15. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    16. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
    17. Xu, X.Y. & Ang, B.W., 2014. "Multilevel index decomposition analysis: Approaches and application," Energy Economics, Elsevier, vol. 44(C), pages 375-382.
    18. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    19. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    20. Ebohon, Obas John & Ikeme, Anthony Jekwu, 2006. "Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries," Energy Policy, Elsevier, vol. 34(18), pages 3599-3611, December.

    More about this item

    JEL classification:

    • B23 - Schools of Economic Thought and Methodology - - History of Economic Thought since 1925 - - - Econometrics; Quantitative and Mathematical Studies
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:srs:jemt00:v:1:y:2010:i:1:p:22-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Claudiu Popirlan (email available below). General contact details of provider: http://journals.aserspublishing.eu/jemt .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.