IDEAS home Printed from https://ideas.repec.org/a/aiy/jnjaer/v20y2021i3p428-460.html
   My bibliography  Save this article

Energy Efficiency of Russian Copper Companies as a Basis for Ensuring Their Global Competitiveness

Author

Listed:
  • V.V. Krivorotov
  • A.V. Kalina
  • S.E. Erypalov
  • P.A. Koryakina

Abstract

The purpose of this study is to develop methodological tools and assess the energy efficiency of Russian copper companies in comparison with the world's leading competitors as the basis for ensuring their competitive development. It is shown that in today's conditions the defining vector of economic development in the leading countries of the world is the concept of low-carbon development and the implementation of the model of a «green economy, based on the introduction of energy-efficient low-carbon technologies that reduce energy intensity and the level of greenhouse gas emissions, on the widespread implementation of energy conservation policies and stimulating the rational use of energy resources A scientific and methodological approach to researching and increasing the competitiveness of companies based on their energy efficient development based on the use of a systematic approach and the principle of feedback between the company's competitiveness and the implementation of its energy efficient development strategy is proposed. A methodological approach to assessing the energy efficiency of companies has been developed, based on the use of indicative analysis and comparative analysis of energy efficiency indicators. Within the framework of the developed methodology, a system of indicators of the company's energy efficiency is proposed, which is based on a three-level assessment at the following levels: the level of the production complex as a whole; the level of certain types of products manufactured by the production complex; the level of the technological process for the production of products. Within the framework of the considered three-tier system, a block system of energy efficiency indicators of the company has been formed. The conceptual scheme of the methodology for the multicriteria selection of priority energy-efficient projects for the development of the company is proposed, based on a complex multi-stage procedure, as a result of the implementation of which the selection of the set of projects is made that will provide the maximum effect from the standpoint of increasing the company's energy efficiency. Practical testing of the proposed methodological developments was carried out in relation to the Ural Mining and Metallurgical Company - the largest domestic company in the field of copper and copper products production - in comparison with the world's leading competitors. The results of the approbation showed a significant lag of the company in a number of key energy efficiency indicators from the world's leading manufacturers.

Suggested Citation

  • V.V. Krivorotov & A.V. Kalina & S.E. Erypalov & P.A. Koryakina, 2021. "Energy Efficiency of Russian Copper Companies as a Basis for Ensuring Their Global Competitiveness," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(3), pages 428-460.
  • Handle: RePEc:aiy:jnjaer:v:20:y:2021:i:3:p:428-460
    DOI: http://dx.doi.org/10.15826/vestnik.2021.20.3.018
    as

    Download full text from publisher

    File URL: https://journalaer.ru//fileadmin/user_upload/site_15934/2021/04_Krivorotov_Kalina_Erypalov_Korjakina.pdf
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.15826/vestnik.2021.20.3.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    2. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    3. Agnolucci, Paolo, 2007. "Wind electricity in Denmark: A survey of policies, their effectiveness and factors motivating their introduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 951-963, June.
    4. Vanessa Brechling & Stephen Smith, 1994. "Household energy efficiency in the UK," Fiscal Studies, Institute for Fiscal Studies, vol. 15(2), pages 44-56, May.
    5. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    6. Mathews, John A. & Kidney, Sean & Mallon, Karl & Hughes, Mark, 2010. "Mobilizing private finance to drive an energy industrial revolution," Energy Policy, Elsevier, vol. 38(7), pages 3263-3265, July.
    7. Nicolli, Francesco & Vona, Francesco, 2019. "Energy market liberalization and renewable energy policies in OECD countries," Energy Policy, Elsevier, vol. 128(C), pages 853-867.
    8. Cadoret, Isabelle & Padovano, Fabio, 2016. "The political drivers of renewable energies policies," Energy Economics, Elsevier, vol. 56(C), pages 261-269.
    9. Moreau, Vincent & Neves, Catarina Amarante De Oliveira & Vuille, François, 2019. "Is decoupling a red herring? The role of structural effects and energy policies in Europe," Energy Policy, Elsevier, vol. 128(C), pages 243-252.
    10. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p544jc8op is not listed on IDEAS
    11. Barr, Stewart & Gilg, Andrew W & Ford, Nicholas, 2005. "The household energy gap: examining the divide between habitual- and purchase-related conservation behaviours," Energy Policy, Elsevier, vol. 33(11), pages 1425-1444, July.
    12. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    13. Boardman, Brenda, 2004. "New directions for household energy efficiency: evidence from the UK," Energy Policy, Elsevier, vol. 32(17), pages 1921-1933, November.
    14. Francesco Nicolli & Francesco Vona, 2019. "Energy market liberalization and renewable energy policies in OECD countries," SciencePo Working papers Main hal-02562707, HAL.
    15. Nanduri, Mallika & Nyboer, John & Jaccard, Mark, 2002. "Aggregating physical intensity indicators: results of applying the composite indicator approach to the Canadian industrial sector," Energy Policy, Elsevier, vol. 30(2), pages 151-163, January.
    16. Morton, Craig & Wilson, Charlie & Anable, Jillian, 2018. "The diffusion of domestic energy efficiency policies: A spatial perspective," Energy Policy, Elsevier, vol. 114(C), pages 77-88.
    17. Stephen Hall & Timothy J Foxon & Ronan Bolton, 2017. "Investing in low-carbon transitions: energy finance as an adaptive market," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 280-298, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Larisa V. Vazhenina & Elena R. Magaril & Igor A. Mayburov, 2022. "Comprehensive Assessment of Resource Efficiency of Russian Gas Industry Companies," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 21(3), pages 454-485.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    2. Torrie, Ralph D. & Stone, Christopher & Layzell, David B., 2016. "Understanding energy systems change in Canada: 1. Decomposition of total energy intensity," Energy Economics, Elsevier, vol. 56(C), pages 101-106.
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    5. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    6. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    7. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    8. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
    9. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    10. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    11. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    12. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27," Energy Policy, Elsevier, vol. 68(C), pages 576-584.
    13. Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
    14. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    15. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    16. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    17. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    18. Perillo, Frederico & Pereira da Silva, Patrícia & Cerqueira, Pedro A., 2022. "Decoupling efficiency from electricity intensity: An empirical assessment in the EU," Energy Policy, Elsevier, vol. 169(C).
    19. Suyi Kim, 2017. "LMDI Decomposition Analysis of Energy Consumption in the Korean Manufacturing Sector," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    20. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.

    More about this item

    Keywords

    copper companies; energy efficiency; energy efficiency indicators; comparative assessment; energy efficiency projects; competitiveness;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • L16 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Industrial Organization and Macroeconomics; Macroeconomic Industrial Structure
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiy:jnjaer:v:20:y:2021:i:3:p:428-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalia Starodubets (email available below). General contact details of provider: https://edirc.repec.org/data/seurfru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.