IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v86y1995i3p526-536.html
   My bibliography  Save this item

Minimax regret solution to linear programming problems with an interval objective function

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ng, Tsan Sheng, 2013. "Robust regret for uncertain linear programs with application to co-production models," European Journal of Operational Research, Elsevier, vol. 227(3), pages 483-493.
  2. Debjani Chakraborti, 2016. "Evolutionary technique based goal programming approach to chance constrained interval valued bilevel programming problems," OPSEARCH, Springer;Operational Research Society of India, vol. 53(2), pages 390-408, June.
  3. Carla Oliveira & Carlos Antunes & Carlos Barrico, 2014. "An enumerative algorithm for computing all possibly optimal solutions to an interval LP," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 530-542, July.
  4. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
  5. Chen Bai & Lixiao Yao & Cheng Wang & Yongxuan Zhao & Weien Peng, 2022. "Optimization of Water and Energy Spatial Patterns in the Cascade Pump Station Irrigation District," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
  6. Kasperski, Adam & Zielinski, Pawel, 2010. "Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights," European Journal of Operational Research, Elsevier, vol. 200(3), pages 680-687, February.
  7. Chassein, André & Goerigk, Marc, 2017. "Minmax regret combinatorial optimization problems with ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 258(1), pages 58-69.
  8. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
  9. Roya Soltani & Seyed J Sadjadi, 2014. "Reliability optimization through robust redundancy allocation models with choice of component type under fuzziness," Journal of Risk and Reliability, , vol. 228(5), pages 449-459, October.
  10. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
  11. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
  12. Jomon Paul & Govind Hariharan, 2012. "Location-allocation planning of stockpiles for effective disaster mitigation," Annals of Operations Research, Springer, vol. 196(1), pages 469-490, July.
  13. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
  14. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
  15. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
  16. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
  17. Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
  18. Averbakh, Igor & Lebedev, Vasilij, 2005. "On the complexity of minmax regret linear programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 227-231, January.
  19. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
  20. V Gabrel & C Murat, 2010. "Robustness and duality in linear programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1288-1296, August.
  21. Hladík, Milan, 2016. "Robust optimal solutions in interval linear programming with forall-exists quantifiers," European Journal of Operational Research, Elsevier, vol. 254(3), pages 705-714.
  22. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
  23. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
  24. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
  25. Mausser, Helmut E. & Laguna, Manuel, 1999. "A heuristic to minimax absolute regret for linear programs with interval objective function coefficients," European Journal of Operational Research, Elsevier, vol. 117(1), pages 157-174, August.
  26. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
  27. Masahiro Inuiguchi & Zhenzhong Gao & Carla Oliveira Henriques, 2023. "Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 51-79, March.
  28. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
  29. Georgios P. Trachanas & Aikaterini Forouli & Nikolaos Gkonis & Haris Doukas, 2020. "Hedging uncertainty in energy efficiency strategies: a minimax regret analysis," Operational Research, Springer, vol. 20(4), pages 2229-2244, December.
  30. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
  31. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
  32. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
  33. Silvio Giove & Paolo Bortot, 2006. "A solving tool for fuzzy quadratic optimal control problems," Working Papers 148, Department of Applied Mathematics, Università Ca' Foscari Venezia.
  34. Vahid Nazari-Ghanbarloo & Ali Ghodratnama, 2021. "Optimizing a robust tri-objective multi-period reliable supply chain network considering queuing system and operational and disruption risks," Operational Research, Springer, vol. 21(3), pages 1963-2020, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.