IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v22y2014i2p530-542.html
   My bibliography  Save this article

An enumerative algorithm for computing all possibly optimal solutions to an interval LP

Author

Listed:
  • Carla Oliveira
  • Carlos Antunes
  • Carlos Barrico

Abstract

Interval programming techniques are a valuable approach for tackling uncertainty in mathematical programming models, because they only require the knowledge of the feasible range of variation of the model coefficients. Nevertheless, the use of these techniques has some limitations, namely when the number of decision variables with interval coefficients is high since the number of objective functions at stake in the sub-problem for testing the (weak) efficiency of each non-basic variable may be easily out of an acceptable computational effort. A similar problem may arise with the number of sub-problems for testing the multi-parametric optimality of each solution obtained (that is, to check whether the solution is possibly optimal or not) and the multi-parametric optimality of each edge by using the all emanating edges algorithm. An alternative algorithm is suggested that allows obtaining all possibly optimal solutions, which fulfill the formal criteria of optimality in a feasible bounded region. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • Carla Oliveira & Carlos Antunes & Carlos Barrico, 2014. "An enumerative algorithm for computing all possibly optimal solutions to an interval LP," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 530-542, July.
  • Handle: RePEc:spr:topjnl:v:22:y:2014:i:2:p:530-542
    DOI: 10.1007/s11750-012-0268-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-012-0268-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-012-0268-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    2. Inuiguchi, Masahiro & Sakawa, Masatoshi, 1995. "Minimax regret solution to linear programming problems with an interval objective function," European Journal of Operational Research, Elsevier, vol. 86(3), pages 526-536, November.
    3. Ralph E. Steuer, 1981. "Algorithms for Linear Programming Problems with Interval Objective Function Coefficients," Mathematics of Operations Research, INFORMS, vol. 6(3), pages 333-348, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    2. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    3. Henriques, C.O. & Inuiguchi, M. & Luque, M. & Figueira, J.R., 2020. "New conditions for testing necessarily/possibly efficiency of non-degenerate basic solutions based on the tolerance approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 341-355.
    4. Luo, Chunling & Tan, Chin Hon & Liu, Xiao, 2020. "Maximum excess dominance: Identifying impractical solutions in linear problems with interval coefficients," European Journal of Operational Research, Elsevier, vol. 282(2), pages 660-676.
    5. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
    6. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    7. Mehdi Allahdadi & Aida Batamiz, 2021. "Generation of some methods for solving interval multi-objective linear programming models," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 1077-1115, December.
    8. Yating Guo & Guoju Ye & Wei Liu & Dafang Zhao & Savin Treanţǎ, 2021. "Optimality Conditions and Duality for a Class of Generalized Convex Interval-Valued Optimization Problems," Mathematics, MDPI, vol. 9(22), pages 1-14, November.
    9. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    10. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.
    11. A O Kazakçi & S Rozakis & D Vanderpooten, 2007. "Energy crop supply in France: a min-max regret approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(11), pages 1470-1479, November.
    12. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    13. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    14. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    15. Masahiro Inuiguchi & Zhenzhong Gao & Carla Oliveira Henriques, 2023. "Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 51-79, March.
    16. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    17. Shiang-Tai Liu & Yueh-Chiang Lee, 2021. "Fuzzy measures for fuzzy cross efficiency in data envelopment analysis," Annals of Operations Research, Springer, vol. 300(2), pages 369-398, May.
    18. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    19. Christoph Buchheim & Jannis Kurtz, 2018. "Robust combinatorial optimization under convex and discrete cost uncertainty," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(3), pages 211-238, September.
    20. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:22:y:2014:i:2:p:530-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.