IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v194y2009i1p177-183.html
   My bibliography  Save this item

On the bias of Croston's forecasting method

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
  2. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
  3. G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
  4. Wallström, Peter & Segerstedt, Anders, 2010. "Evaluation of forecasting error measurements and techniques for intermittent demand," International Journal of Production Economics, Elsevier, vol. 128(2), pages 625-636, December.
  5. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
  6. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
  7. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
  8. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
  9. Aiping Jiang & Qiuguo Chi & Junjun Gao & Maoguo Wu, 2019. "An Integrated Approach to Forecasting Intermittent Demand for Electric Power Materials," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1309-1335, April.
  10. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
  11. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
  12. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
  13. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
  14. Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
  15. Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
  16. Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
  17. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
  18. Aiping Jiang & Kwok Leung Tam & Xiaoyun Guo & Yufeng Zhang, 2020. "A new approach to forecasting intermittent demand based on the mixed zero‐truncated Poisson model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 69-83, January.
  19. Jakub Dyntar & Eva Kemrová & Ivan Gros, 2010. "Simulation approach in stock control of products with sporadic demand," Ekonomika a Management, Prague University of Economics and Business, vol. 2010(3).
  20. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
  21. Ferbar Tratar, Liljana, 2015. "Forecasting method for noisy demand," International Journal of Production Economics, Elsevier, vol. 161(C), pages 64-73.
  22. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
  23. Altay, Nezih & Litteral, Lewis A. & Rudisill, Frank, 2012. "Effects of correlation on intermittent demand forecasting and stock control," International Journal of Production Economics, Elsevier, vol. 135(1), pages 275-283.
  24. Houxiang Wang & Haitao Liu & Songshi Shao & Zhihua Zhang, 2024. "Methodology of Shipboard Spare Parts Requirements Based on Whole Part Repair Strategy," Mathematics, MDPI, vol. 12(19), pages 1-25, September.
  25. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
  26. Petropoulos, Fotios & Kourentzes, Nikolaos & Nikolopoulos, Konstantinos, 2016. "Another look at estimators for intermittent demand," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 154-161.
  27. Zied Babai, M. & Syntetos, Aris A. & Teunter, Ruud, 2010. "On the empirical performance of (T, s, S) heuristics," European Journal of Operational Research, Elsevier, vol. 202(2), pages 466-472, April.
  28. Syntetos, Aris A. & Boylan, John E., 2010. "On the variance of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 128(2), pages 546-555, December.
  29. Sharma, Pankaj & Kulkarni, Makarand S & Yadav, Vikas, 2017. "A simulation based optimization approach for spare parts forecasting and selective maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 274-289.
  30. Zied Babai, Mohamed & Syntetos, Aris & Teunter, Ruud, 2014. "Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence," International Journal of Production Economics, Elsevier, vol. 157(C), pages 212-219.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.