IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v51y2007i11p5247-5252.html
   My bibliography  Save this item

Fitting finite mixtures of generalized linear regressions in R

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Naoki Sudo, 2020. "Two Types of Support for Redistribution of Wealth: Consistent and Inconsistent Policy Preferences," Societies, MDPI, vol. 10(2), pages 1-18, June.
  2. Battisti, Michele & Parmeter, Christopher F., 2013. "Clustering and polarization in the distribution of output: A multivariate perspective," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 144-162.
  3. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Linear mixed models with marginally symmetric nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 151-169.
  4. Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
  5. Mukta Paliwal & Anand Patwardhan, 2013. "Identification of clusters in tropical cyclone tracks of North Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 645-656, September.
  6. Michele Battisti & Christopher F. Parmeter, 2010. "Convergence Tools and Mixture Analysis," Working Papers CELEG 1007, Dipartimento di Economia e Finanza, LUISS Guido Carli.
  7. Rainer Schlittgen, 2011. "A weighted least-squares approach to clusterwise regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(2), pages 205-217, June.
  8. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
  9. Dimitris Karlis & Purushottam Papatla & Sudipt Roy, 2016. "Finite mixtures of censored Poisson regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 100-122, May.
  10. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
  11. repec:jss:jstsof:28:i04 is not listed on IDEAS
  12. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
  13. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
  14. Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
  15. Koen Degeling & Hendrik Koffijberg & Mira D. Franken & Miriam Koopman & Maarten J. IJzerman, 2019. "Comparing Strategies for Modeling Competing Risks in Discrete-Event Simulations: A Simulation Study and Illustration in Colorectal Cancer," Medical Decision Making, , vol. 39(1), pages 57-73, January.
  16. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
  17. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
  18. Zhou, Yang & Shi, Zhixiong & Shi, Zhengyu & Gao, Qing & Wu, Libo, 2019. "Disaggregating power consumption of commercial buildings based on the finite mixture model," Applied Energy, Elsevier, vol. 243(C), pages 35-46.
  19. Sara Dias & Valeska Andreozzi & Rosário Martins, 2013. "Analysis of HIV/AIDS DRG in Portugal: a hierarchical finite mixture model," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(5), pages 715-723, October.
  20. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
  21. Proust-Lima, Cécile & Philipps, Viviane & Liquet, Benoit, 2017. "Estimation of Extended Mixed Models Using Latent Classes and Latent Processes: The R Package lcmm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i02).
  22. Ying Liu & Sudha Ram & Robert F. Lusch & Michael Brusco, 2010. "Multicriterion Market Segmentation: A New Model, Implementation, and Evaluation," Marketing Science, INFORMS, vol. 29(5), pages 880-894, 09-10.
  23. Cristina Bernini & Maria Francesca Cracolici & Cinzia Viroli, 2017. "Does Tourism Consumption Behaviour Mirror Differences in Living Standards?," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 134(3), pages 1157-1171, December.
  24. Bettina Grün & Friedrich Leisch, 2008. "Identifiability of Finite Mixtures of Multinomial Logit Models with Varying and Fixed Effects," Journal of Classification, Springer;The Classification Society, vol. 25(2), pages 225-247, November.
  25. Omerovic, Sanela & Friedl, Herwig & Grün, Bettina, 2022. "Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models," Econometrics and Statistics, Elsevier, vol. 22(C), pages 124-135.
  26. Francesca Torti & Marco Riani & Gianluca Morelli, 2021. "Semiautomatic robust regression clustering of international trade data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 863-894, September.
  27. Adrian O’Hagan & Thomas Brendan Murphy & Luca Scrucca & Isobel Claire Gormley, 2019. "Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap," Computational Statistics, Springer, vol. 34(4), pages 1779-1813, December.
  28. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
  29. Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
  30. Heinz Holling & Katrin Jansen & Walailuck Böhning & Dankmar Böhning & Susan Martin & Patarawan Sangnawakij, 2022. "Estimation of Effect Heterogeneity in Rare Events Meta-Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 1081-1102, September.
  31. Jessica H. Belle & Howard H. Chang & Yujie Wang & Xuefei Hu & Alexei Lyapustin & Yang Liu, 2017. "The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM 2.5 Mass and Composition," IJERPH, MDPI, vol. 14(10), pages 1-15, October.
  32. Abhinandan Dalal & Diganta Mukherjee & Subhrajyoty Roy, 2020. "The Information Content of Taster's Valuation in Tea Auctions of India," Papers 2005.02814, arXiv.org.
  33. Spindler, M., 2014. "“They do know what they are doing ... at least most of them.†Asymmetric Information in the (private) Disability Insurance," Health, Econometrics and Data Group (HEDG) Working Papers 14/16, HEDG, c/o Department of Economics, University of York.
  34. Oyarzun, Carlos & Sanjurjo, Adam & Nguyen, Hien, 2017. "Response functions," European Economic Review, Elsevier, vol. 98(C), pages 1-31.
  35. Hartmann-Wendels, Thomas & Miller, Patrick & Töws, Eugen, 2014. "Loss given default for leasing: Parametric and nonparametric estimations," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 364-375.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.