IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v85y2008i6p475-482.html
   My bibliography  Save this item

Improving the prediction of UK domestic energy-demand using annual consumption-data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tamaryn Menneer & Zening Qi & Timothy Taylor & Cheryl Paterson & Gengyang Tu & Lewis R. Elliott & Karyn Morrissey & Markus Mueller, 2021. "Changes in Domestic Energy and Water Usage during the UK COVID-19 Lockdown Using High-Resolution Temporal Data," IJERPH, MDPI, vol. 18(13), pages 1-21, June.
  2. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
  3. Kelly, Scott, 2011. "Do homes that are more energy efficient consume less energy?: A structural equation model of the English residential sector," Energy, Elsevier, vol. 36(9), pages 5610-5620.
  4. Namazkhan, Maliheh & Albers, Casper & Steg, Linda, 2020. "A decision tree method for explaining household gas consumption: The role of building characteristics, socio-demographic variables, psychological factors and household behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  5. Pelenur, Marcos J. & Cruickshank, Heather J., 2012. "Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home," Energy, Elsevier, vol. 47(1), pages 348-357.
  6. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
  7. Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
  8. Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
  9. Andersen, F.M. & Gunkel, P.A. & Jacobsen, H.K. & Kitzing, L., 2021. "Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data," Energy Economics, Elsevier, vol. 100(C).
  10. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
  11. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
  12. Li, Xing & Chen, Ying & Cheng, Zhengdong & Jia, Lisi & Mo, Songping & Liu, Zhuowei, 2014. "Ultrahigh specific surface area of graphene for eliminating subcooling of water," Applied Energy, Elsevier, vol. 130(C), pages 824-829.
  13. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
  14. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
  15. Paravantis, John A. & Stigka, Eleni & Mihalakakou, Giouli & Michalena, Evanthie & Hills, Jeremy M. & Dourmas, Vasilis, 2018. "Social acceptance of renewable energy projects: A contingent valuation investigation in Western Greece," Renewable Energy, Elsevier, vol. 123(C), pages 639-651.
  16. Walter, Travis & Sohn, Michael D., 2016. "A regression-based approach to estimating retrofit savings using the Building Performance Database," Applied Energy, Elsevier, vol. 179(C), pages 996-1005.
  17. Michael Chesser & Jim Hanly & Damien Cassells & Nikolaos Apergis, 2019. "Household Energy Consumption: A Study of Micro Renewable Energy Systems in Ireland," The Economic and Social Review, Economic and Social Studies, vol. 50(2), pages 265-280.
  18. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
  19. Huebner, Gesche M. & Hamilton, Ian & Chalabi, Zaid & Shipworth, David & Oreszczyn, Tadj, 2015. "Explaining domestic energy consumption – The comparative contribution of building factors, socio-demographics, behaviours and attitudes," Applied Energy, Elsevier, vol. 159(C), pages 589-600.
  20. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
  21. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
  22. Dorothée Charlier & Bérangère Legendre, 2021. "Carbon Dioxide Emissions and Aging: Disentangling Behavior from Energy Efficiency," Post-Print hal-03877220, HAL.
  23. Anthony Beck & Gavin Long & Doreen S Boyd & Julian F Rosser & Jeremy Morley & Richard Duffield & Mike Sanderson & Darren Robinson, 2020. "Automated classification metrics for energy modelling of residential buildings in the UK with open algorithms," Environment and Planning B, , vol. 47(1), pages 45-64, January.
  24. Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
  25. Marchand, Robert D. & Koh, S.C. Lenny & Morris, Jonathan C., 2015. "Delivering energy efficiency and carbon reduction schemes in England: Lessons from Green Deal Pioneer Places," Energy Policy, Elsevier, vol. 84(C), pages 96-106.
  26. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
  27. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
  28. Bartusch, Cajsa & Odlare, Monica & Wallin, Fredrik & Wester, Lars, 2012. "Exploring variance in residential electricity consumption: Household features and building properties," Applied Energy, Elsevier, vol. 92(C), pages 637-643.
  29. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
  30. Calvin Nsangou, Jean & Kenfack, Joseph & Nzotcha, Urbain & Tamo, Thomas Tatietse, 2020. "Assessment of the potential for electricity savings in households in Cameroon: A stochastic frontier approach," Energy, Elsevier, vol. 211(C).
  31. Liu, Zhong & Wang, Menghan & Xiong, Qinqin & Liu, Chang, 2020. "Does centralized residence promote the use of cleaner cooking fuels? Evidence from rural China," Energy Economics, Elsevier, vol. 91(C).
  32. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
  33. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
  34. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
  35. Allinson, David & Irvine, Katherine N. & Edmondson, Jill L. & Tiwary, Abhishek & Hill, Graeme & Morris, Jonathan & Bell, Margaret & Davies, Zoe G. & Firth, Steven K. & Fisher, Jill & Gaston, Kevin J. , 2016. "Measurement and analysis of household carbon: The case of a UK city," Applied Energy, Elsevier, vol. 164(C), pages 871-881.
  36. Lee, Soo-Jin & Song, Seung-Yeong, 2022. "Time-series analysis of the effects of building and household features on residential end-use energy," Applied Energy, Elsevier, vol. 312(C).
  37. Hong, Taehoon & Koo, Choongwan & Jeong, Kwangbok, 2012. "A decision support model for reducing electric energy consumption in elementary school facilities," Applied Energy, Elsevier, vol. 95(C), pages 253-266.
  38. Stigka, Eleni K. & Paravantis, John A. & Mihalakakou, Giouli K., 2014. "Social acceptance of renewable energy sources: A review of contingent valuation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 100-106.
  39. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
  40. Laurie Buys & Desley Vine & Gerard Ledwich & John Bell & Kerrie Mengersen & Peter Morris & Jim Lewis, 2015. "A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
  41. Dahiru A Bala & Mohammed Shuaibu, 2024. "Forecasting United Kingdom's energy consumption using machine learning and hybrid approaches," Energy & Environment, , vol. 35(3), pages 1493-1531, May.
  42. Irene Manzini Ceinar & Ilaria Mariotti, 2021. "Teleworking In Post-Pandemic Times:May Local Coworking Spaces Be The Future Trend?," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 15(1), pages 52-76, JUNE.
  43. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
  44. Zhong Xu & Xiaoqi Wang & Siqi Tang & Yuhao Chen & Yan Yang, 2024. "Construction and Case Analysis of a Comprehensive Evaluation System for Rural Building Energy Consumption from an Energy–Building–Behavior Composite Perspective," Sustainability, MDPI, vol. 16(16), pages 1-26, August.
  45. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
  46. Yi-Tui Chen, 2017. "The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
  47. Zhang, Tao & Siebers, Peer-Olaf & Aickelin, Uwe, 2012. "A three-dimensional model of residential energy consumer archetypes for local energy policy design in the UK," Energy Policy, Elsevier, vol. 47(C), pages 102-110.
  48. Paraskevas Koukaras & Akeem Mustapha & Aristeidis Mystakidis & Christos Tjortjis, 2024. "Optimizing Building Short-Term Load Forecasting: A Comparative Analysis of Machine Learning Models," Energies, MDPI, vol. 17(6), pages 1-26, March.
  49. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.