IDEAS home Printed from https://ideas.repec.org/a/eso/journl/v50y2019i2p265-280.html
   My bibliography  Save this article

Household Energy Consumption: A Study of Micro Renewable Energy Systems in Ireland

Author

Listed:
  • Michael Chesser

    (Technological University Dublin)

  • Jim Hanly

    (Technological University Dublin)

  • Damien Cassells

    (Technological University Dublin)

  • Nikolaos Apergis

    (University of Piraeus)

Abstract

Ireland’s National Renewable Energy Action plan addresses how it will meet its environmental commitments. One element of the strategy is the use and promotion of micro renewable energy systems (micro-RES). This paper profiles households that have adopted micro-RES and examines whether micro-RES installations have resulted in a reduction in energy consumption based on data from the Irish Household Budget Survey. Results indicate that the presence of micro-RES does not result in a reduction of electricity use, rather the opposite. Furthermore, our findings indicate that some revision of energy policy is needed, as the presence of micro-RES does not result in a decrease in total energy use.

Suggested Citation

  • Michael Chesser & Jim Hanly & Damien Cassells & Nikolaos Apergis, 2019. "Household Energy Consumption: A Study of Micro Renewable Energy Systems in Ireland," The Economic and Social Review, Economic and Social Studies, vol. 50(2), pages 265-280.
  • Handle: RePEc:eso:journl:v:50:y:2019:i:2:p:265-280
    as

    Download full text from publisher

    File URL: https://www.esr.ie/article/view/1182/223
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    3. Belaïd, Fateh, 2016. "Understanding the spectrum of domestic energy consumption: Empirical evidence from France," Energy Policy, Elsevier, vol. 92(C), pages 220-233.
    4. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    5. Islam, Towhidul, 2014. "Household level innovation diffusion model of photo-voltaic (PV) solar cells from stated preference data," Energy Policy, Elsevier, vol. 65(C), pages 340-350.
    6. Cramer, James C. & Miller, Nancy & Craig, Paul & Hackett, Bruce M. & Dietz, Thomas M. & Vine, Edward L. & Levine, Mark D. & Kowalczyk, Dan J., 1985. "Social and engineering determinants and their equity implications in residential electricity use," Energy, Elsevier, vol. 10(12), pages 1283-1291.
    7. Carter, Adrian & Craigwell, Roland & Moore, Winston, 2012. "Price reform and household demand for electricity," Journal of Policy Modeling, Elsevier, vol. 34(2), pages 242-252.
    8. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    9. McCoy, Daire & Curtis, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," Resource and Energy Economics, Elsevier, vol. 52(C), pages 64-86.
    10. Braun, Frauke G., 2010. "Determinants of households' space heating type: A discrete choice analysis for German households," Energy Policy, Elsevier, vol. 38(10), pages 5493-5503, October.
    11. Harold, Jason & Lyons, Seán & Cullinan, John, 2015. "The determinants of residential gas demand in Ireland," Energy Economics, Elsevier, vol. 51(C), pages 475-483.
    12. Chong, Howard, 2012. "Building vintage and electricity use: Old homes use less electricity in hot weather," European Economic Review, Elsevier, vol. 56(5), pages 906-930.
    13. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    14. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    15. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    16. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    17. Wallis, Hannah & Nachreiner, Malte & Matthies, Ellen, 2016. "Adolescents and electricity consumption; Investigating sociodemographic, economic, and behavioural influences on electricity consumption in households," Energy Policy, Elsevier, vol. 94(C), pages 224-234.
    18. Larsen, Bodil Merethe & Nesbakken, Runa, 2004. "Household electricity end-use consumption: results from econometric and engineering models," Energy Economics, Elsevier, vol. 26(2), pages 179-200, March.
    19. Baker, Keith J. & Rylatt, R. Mark, 2008. "Improving the prediction of UK domestic energy-demand using annual consumption-data," Applied Energy, Elsevier, vol. 85(6), pages 475-482, June.
    20. Bartusch, Cajsa & Odlare, Monica & Wallin, Fredrik & Wester, Lars, 2012. "Exploring variance in residential electricity consumption: Household features and building properties," Applied Energy, Elsevier, vol. 92(C), pages 637-643.
    21. Mills, Bradford F. & Schleich, Joachim, 2009. "Profits or preferences? Assessing the adoption of residential solar thermal technologies," Energy Policy, Elsevier, vol. 37(10), pages 4145-4154, October.
    22. McCoy, Daire & Curtice, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," LSE Research Online Documents on Economics 86625, London School of Economics and Political Science, LSE Library.
    23. J. Harold & J. Cullinan & S. Lyons, 2017. "The income elasticity of household energy demand: a quantile regression analysis," Applied Economics, Taylor & Francis Journals, vol. 49(54), pages 5570-5578, November.
    24. Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersen, F.M. & Gunkel, P.A. & Jacobsen, H.K. & Kitzing, L., 2021. "Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data," Energy Economics, Elsevier, vol. 100(C).
    2. McAndrew, Ryan & Mulcahy, Rory & Gordon, Ross & Russell-Bennett, Rebekah, 2021. "Household energy efficiency interventions: A systematic literature review," Energy Policy, Elsevier, vol. 150(C).
    3. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Agnieszka Mazur-Dudzińska, 2021. "The Situation of Households on the Energy Market in the European Union: Consumption, Prices, and Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-21, October.
    4. Sanghamitra Mukherjee & Tensay Meles & L. (Lisa B.) Ryan & Séin Healy & Robert Mooney & Lindsay Sharpe & Paul Hayes, 2020. "Attitudes to Renewable Energy Technologies: Driving Change in Early Adopter Markets," Working Papers 202026, School of Economics, University College Dublin.
    5. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    2. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    3. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
    4. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
    5. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shahtahmassebi, Golnaz & Cumberbatch, Miranda & Shrahily, Raid, 2017. "The impact of the UK household life-cycle transitions on the electricity and gas usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 505-518.
    6. Curtis, John & Tovar, Miguel Angel & Grilli, Gianluca, 2020. "Access to and consumption of natural gas: Spatial and socio-demographic drivers," Energy Policy, Elsevier, vol. 143(C).
    7. Kettani, Maryème & Sanin, Maria Eugenia, 2024. "Energy consumption and energy poverty in Morocco," Energy Policy, Elsevier, vol. 185(C).
    8. McCoy, Daire & Curtice, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," LSE Research Online Documents on Economics 86625, London School of Economics and Political Science, LSE Library.
    9. McCoy, Daire & Curtis, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," Resource and Energy Economics, Elsevier, vol. 52(C), pages 64-86.
    10. Grottera, Carolina & Barbier, Carine & Sanches-Pereira, Alessandro & Abreu, Mariana Weiss de & Uchôa, Christiane & Tudeschini, Luís Gustavo & Cayla, Jean-Michel & Nadaud, Franck & Pereira Jr, Amaro Ol, 2018. "Linking electricity consumption of home appliances and standard of living: A comparison between Brazilian and French households," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 877-888.
    11. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    12. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
    13. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
    14. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    15. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
    16. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    17. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    18. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    19. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    20. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eso:journl:v:50:y:2019:i:2:p:265-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aedin Doris (email available below). General contact details of provider: https://www.esr.ie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.