IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6818-d581998.html
   My bibliography  Save this article

Changes in Domestic Energy and Water Usage during the UK COVID-19 Lockdown Using High-Resolution Temporal Data

Author

Listed:
  • Tamaryn Menneer

    (European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
    Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn TR10 9FE, UK)

  • Zening Qi

    (College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus, University of Exeter, North Park Rd, Exeter EX4 4QF, UK)

  • Timothy Taylor

    (European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK)

  • Cheryl Paterson

    (European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK)

  • Gengyang Tu

    (European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK)

  • Lewis R. Elliott

    (European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK)

  • Karyn Morrissey

    (European Centre for Environment and Human Health, University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK)

  • Markus Mueller

    (Environment and Sustainability Institute, Penryn Campus, University of Exeter, Penryn TR10 9FE, UK
    College of Engineering, Mathematics and Physical Sciences, Penryn Campus, University of Exeter, Penryn TR10 9FE, UK)

Abstract

In response to the COVID-19 outbreak, the UK Government provided public health advice to stay at home from 16 March 2020, followed by instruction to stay at home (full lockdown) from 24 March 2020. We use data with high temporal resolution from utility sensors installed in 280 homes across social housing in Cornwall, UK, to test for changes in domestic electricity, gas and water usage in response to government guidance. Gas usage increased by 20% following advice to stay at home, the week before full lockdown, although no difference was seen during full lockdown itself. During full lockdown, morning electricity usage shifted to later in the day, decreasing at 6 a.m. and increasing at midday. These changes in energy were echoed in water usage, with a 17% increase and a one-hour delay in peak morning usage. Changes were consistent with people getting up later, spending more time at home and washing more during full lockdown. Evidence for these changes was also observed in later lockdowns, but not between lockdowns. Our findings suggest more compliance with an enforced stay-at-home message than with advice. We discuss implications for socioeconomically disadvantaged households given the indication of inability to achieve increased energy needs during the pandemic.

Suggested Citation

  • Tamaryn Menneer & Zening Qi & Timothy Taylor & Cheryl Paterson & Gengyang Tu & Lewis R. Elliott & Karyn Morrissey & Markus Mueller, 2021. "Changes in Domestic Energy and Water Usage during the UK COVID-19 Lockdown Using High-Resolution Temporal Data," IJERPH, MDPI, vol. 18(13), pages 1-21, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6818-:d:581998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liudmila Rozanova & Alexander Temerev & Antoine Flahault, 2020. "Comparing the Scope and Efficacy of COVID-19 Response Strategies in 16 Countries: An Overview," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    2. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    3. Anderson, Will & White, Vicki & Finney, Andrea, 2012. "Coping with low incomes and cold homes," Energy Policy, Elsevier, vol. 49(C), pages 40-52.
    4. Faruqui, Ahmad & Sergici, Sanem & Sharif, Ahmed, 2010. "The impact of informational feedback on energy consumption—A survey of the experimental evidence," Energy, Elsevier, vol. 35(4), pages 1598-1608.
    5. Galym Tokazhanov & Aidana Tleuken & Mert Guney & Ali Turkyilmaz & Ferhat Karaca, 2020. "How is COVID-19 Experience Transforming Sustainability Requirements of Residential Buildings? A Review," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    6. Harold, Jason & Lyons, Seán & Cullinan, John, 2015. "The determinants of residential gas demand in Ireland," Energy Economics, Elsevier, vol. 51(C), pages 475-483.
    7. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    8. Makki, Anas A. & Stewart, Rodney A. & Beal, Cara D. & Panuwatwanich, Kriengsak, 2015. "Novel bottom-up urban water demand forecasting model: Revealing the determinants, drivers and predictors of residential indoor end-use consumption," Resources, Conservation & Recycling, Elsevier, vol. 95(C), pages 15-37.
    9. Baker, Keith J. & Rylatt, R. Mark, 2008. "Improving the prediction of UK domestic energy-demand using annual consumption-data," Applied Energy, Elsevier, vol. 85(6), pages 475-482, June.
    10. Loveth Moses & Karyn Morrissey & Richard A. Sharpe & Tim Taylor, 2019. "Exposure to Indoor Mouldy Odour Increases the Risk of Asthma in Older Adults Living in Social Housing," IJERPH, MDPI, vol. 16(14), pages 1-14, July.
    11. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mayr, Kentaro Florian & Agnolucci, Paolo, 2024. "The impact of public health measures on household energy consumption: The case of the UK COVID-19 tier system," Energy Economics, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Soo-Jin & Song, Seung-Yeong, 2022. "Time-series analysis of the effects of building and household features on residential end-use energy," Applied Energy, Elsevier, vol. 312(C).
    2. Boukarta Soufiane & Berezowska-Azzag Ewa, 2018. "Assessing Households’ Gas and Electricity Consumption: A Case Study of Djelfa, Algeria," Quaestiones Geographicae, Sciendo, vol. 37(4), pages 111-129, December.
    3. Brown, Christopher J. & Markusson, Nils, 2019. "The responses of older adults to smart energy monitors," Energy Policy, Elsevier, vol. 130(C), pages 218-226.
    4. Coyne, Bryan & Lyons, Sean & McCoy, Daire, 2016. "The Effects of Home Energy Efficiency Upgrades on Social Housing Tenants: Evidence from Ireland," Papers WP544, Economic and Social Research Institute (ESRI).
    5. Hortay, Olivér & Kökény, László, 2020. "A villamosenergia-fogyasztás elhalasztásával kapcsolatos lakossági attitűd felmérése Magyarországon [A survey of popular attitudes to deferment of electricity consumption in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 657-687.
    6. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    7. Namazkhan, Maliheh & Albers, Casper & Steg, Linda, 2020. "A decision tree method for explaining household gas consumption: The role of building characteristics, socio-demographic variables, psychological factors and household behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Bertsch, Valentin & Harold, Jason & Fell, Harrison, 2019. "Consumer preferences for end-use specific curtailable electricity contracts on household appliances during peak load hours," Papers WP632, Economic and Social Research Institute (ESRI).
    9. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    10. Laurie Buys & Desley Vine & Gerard Ledwich & John Bell & Kerrie Mengersen & Peter Morris & Jim Lewis, 2015. "A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-20, March.
    11. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    12. Yi-Tui Chen, 2017. "The Factors Affecting Electricity Consumption and the Consumption Characteristics in the Residential Sector—A Case Example of Taiwan," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    13. Zhen Hu & Mei Wang & Zhe Cheng, 2022. "Mapping the knowledge development and trend of household energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6053-6071, May.
    14. Ahir, Rajesh K. & Chakraborty, Basab, 2021. "A meta-analytic approach for determining the success factors for energy conservation," Energy, Elsevier, vol. 230(C).
    15. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
    16. Calvin Nsangou, Jean & Kenfack, Joseph & Nzotcha, Urbain & Tamo, Thomas Tatietse, 2020. "Assessment of the potential for electricity savings in households in Cameroon: A stochastic frontier approach," Energy, Elsevier, vol. 211(C).
    17. Kang, Jieyi & Reiner, David M., 2022. "What is the effect of weather on household electricity consumption? Empirical evidence from Ireland," Energy Economics, Elsevier, vol. 111(C).
    18. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    19. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2019. "Functional Data Analysis of high-frequency load curves reveals drivers of residential electricity consumption," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-16, June.
    20. Fujimi, Toshio & Kajitani, Yoshio & Chang, Stephanie E., 2016. "Effective and persistent changes in household energy-saving behaviors: Evidence from post-tsunami Japan," Applied Energy, Elsevier, vol. 167(C), pages 93-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6818-:d:581998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.