IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v80y2005i2p115-124.html
   My bibliography  Save this item

Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
  2. Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2019. "Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(1), pages 1-22.
  3. Vondrácek, Jirí & Pelikán, Emil & Konár, Ondrej & Cermáková, Jana & Eben, Krystof & Malý, Marek & Brabec, Marek, 2008. "A statistical model for the estimation of natural gas consumption," Applied Energy, Elsevier, vol. 85(5), pages 362-370, May.
  4. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "A novel method for carbon emission forecasting based on Gompertz's law and fractional grey model: Evidence from American industrial sector," Renewable Energy, Elsevier, vol. 181(C), pages 803-819.
  5. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
  6. Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
  7. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
  8. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
  9. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez, 2019. "Stochastic Brennan–Schwartz Diffusion Process: Statistical Computation and Application," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
  10. Shaikh, Faheemullah & Ji, Qiang & Shaikh, Pervez Hameed & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2017. "Forecasting China’s natural gas demand based on optimised nonlinear grey models," Energy, Elsevier, vol. 140(P1), pages 941-951.
  11. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2006. "Electricity consumption in Morocco: Stochastic Gompertz diffusion analysis with exogenous factors," Applied Energy, Elsevier, vol. 83(10), pages 1139-1151, October.
  12. Mustafa Akpinar & Nejat Yumusak, 2016. "Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods," Energies, MDPI, vol. 9(9), pages 1-17, September.
  13. Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
  14. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
  15. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
  16. Giulio Mangano & Giovanni Zenezini & Anna Corinna Cagliano & Alberto De Marco, 2019. "The dynamics of diffusion of an electronic platform supporting City Logistics services," Operations Management Research, Springer, vol. 12(3), pages 182-198, December.
  17. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
  18. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Scenario analysis of nonresidential natural gas consumption in Italy," Applied Energy, Elsevier, vol. 113(C), pages 392-403.
  19. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
  20. Serli Kiremitciyan & Ahmet Goncu & Tolga Umut Kuzubas, 2014. "A Comparison of Stochastic Models of Natural Gas Consumption," Working Papers 2014/10, Bogazici University, Department of Economics.
  21. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
  22. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2008. "Trend analysis and computational statistical estimation in a stochastic Rayleigh model: Simulation and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(2), pages 209-217.
  23. Kalashnikov, V.V. & Matis, T.I. & Pérez-Valdés, G.A., 2010. "Time series analysis applied to construct US natural gas price functions for groups of states," Energy Economics, Elsevier, vol. 32(4), pages 887-900, July.
  24. Azadeh, A. & Asadzadeh, S.M. & Ghanbari, A., 2010. "An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments," Energy Policy, Elsevier, vol. 38(3), pages 1529-1536, March.
  25. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
  26. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
  27. Ergun Yukseltan & Ahmet Yucekaya & Ayse Humeyra Bilge & Esra Agca Aktunc, 2020. "Forecasting Models for Daily Natural Gas Consumption Considering Periodic Variations and Demand Segregation," Papers 2003.13385, arXiv.org.
  28. Badurally Adam, N.R. & Elahee, M.K. & Dauhoo, M.Z., 2011. "Forecasting of peak electricity demand in Mauritius using the non-homogeneous Gompertz diffusion process," Energy, Elsevier, vol. 36(12), pages 6763-6769.
  29. Rehman, Aniqa & Zhu, Jun-Jie & Segovia, Javier & Anderson, Paul R., 2022. "Assessment of deep learning and classical statistical methods on forecasting hourly natural gas demand at multiple sites in Spain," Energy, Elsevier, vol. 244(PA).
  30. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
  31. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
  32. Nafidi, Ahmed & El Azri, Abdenbi, 2021. "A stochastic diffusion process based on the Lundqvist–Korf growth: Computational aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 25-38.
  33. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
  34. Azadeh, A. & Asadzadeh, S.M. & Saberi, M. & Nadimi, V. & Tajvidi, A. & Sheikalishahi, M., 2011. "A Neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: The cases of Bahrain, Saudi Arabia, Syria, and UAE," Applied Energy, Elsevier, vol. 88(11), pages 3850-3859.
  35. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
  36. Tomasz Cieślik & Piotr Narloch & Adam Szurlej & Krzysztof Kogut, 2022. "Indirect Impact of the COVID-19 Pandemic on Natural Gas Consumption by Commercial Consumers in a Selected City in Poland," Energies, MDPI, vol. 15(4), pages 1-18, February.
  37. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
  38. Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
  39. Azadeh, A. & Asadzadeh, S.M. & Mirseraji, G.H. & Saberi, M., 2015. "An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 47-63.
  40. Ahmed Nafidi & Abdenbi El Azri & Ramón Gutiérrez-Sánchez, 2023. "A Stochastic Schumacher Diffusion Process: Probability Characteristics Computation and Statistical Analysis," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-15, June.
  41. Nafidi, A. & Bahij, M. & Achchab, B. & Gutiérrez-Sanchez, R., 2019. "The stochastic Weibull diffusion process: Computational aspects and simulation," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 575-587.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.