IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v348y2019icp575-587.html
   My bibliography  Save this article

The stochastic Weibull diffusion process: Computational aspects and simulation

Author

Listed:
  • Nafidi, A.
  • Bahij, M.
  • Achchab, B.
  • Gutiérrez-Sanchez, R.

Abstract

This paper presents a new stochastic diffusion process, in which the mean function is proportional to the density function of the Weibull distribution. This is considered a useful model for survival populations, reliability studies and life-testing experiments. The main features of the process are analysed, including the transition probability density function and conditional and non-conditional mean functions. The parameters of the process are estimated by maximum likelihood using discrete sampling. Newton-Raphson and simulated annealing numerical methods are proposed to solve the likelihood equations, and are compared using a simulation example.

Suggested Citation

  • Nafidi, A. & Bahij, M. & Achchab, B. & Gutiérrez-Sanchez, R., 2019. "The stochastic Weibull diffusion process: Computational aspects and simulation," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 575-587.
  • Handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:575-587
    DOI: 10.1016/j.amc.2018.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
    2. Efthymios G. Tsionas, 2000. "Posterior analysis, prediction and reliability in three-parameter weibull distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 29(7), pages 1435-1449, January.
    3. Román-Román, P. & Torres-Ruiz, F., 2015. "A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 579-598.
    4. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    5. Skvortsov, Alex & Ristic, Branko & Kamenev, Alex, 2018. "Predicting population extinction from early observations of the Lotka–Volterra system," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 371-379.
    6. Lun, Isaac Y.F & Lam, Joseph C, 2000. "A study of Weibull parameters using long-term wind observations," Renewable Energy, Elsevier, vol. 20(2), pages 145-153.
    7. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    8. A. Katsamaki & C. H. Skiadas, 1995. "Analytic solution and estimation of parameters on a stochastic exponential model for a technological diffusion process," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 11(1), pages 59-75, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez, 2019. "Stochastic Brennan–Schwartz Diffusion Process: Statistical Computation and Application," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    2. Ahmed Nafidi & Meriem Bahij & Ramón Gutiérrez-Sánchez & Boujemâa Achchab, 2020. "Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example," Mathematics, MDPI, vol. 8(2), pages 1-11, January.
    3. Nafidi, Ahmed & El Azri, Abdenbi, 2021. "A stochastic diffusion process based on the Lundqvist–Korf growth: Computational aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 25-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nafidi, Ahmed & El Azri, Abdenbi, 2021. "A stochastic diffusion process based on the Lundqvist–Korf growth: Computational aspects and simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 25-38.
    2. Ahmed Nafidi & Meriem Bahij & Ramón Gutiérrez-Sánchez & Boujemâa Achchab, 2020. "Two-Parameter Stochastic Weibull Diffusion Model: Statistical Inference and Application to Real Modeling Example," Mathematics, MDPI, vol. 8(2), pages 1-11, January.
    3. Gutiérrez, R. & Gutiérrez-Sánchez, R. & Nafidi, A., 2009. "The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process," Applied Energy, Elsevier, vol. 86(1), pages 18-24, January.
    4. Ahmed Nafidi & Abdenbi El Azri & Ramón Gutiérrez-Sánchez, 2023. "A Stochastic Schumacher Diffusion Process: Probability Characteristics Computation and Statistical Analysis," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-15, June.
    5. Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    6. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez, 2019. "Stochastic Brennan–Schwartz Diffusion Process: Statistical Computation and Application," Mathematics, MDPI, vol. 7(11), pages 1-16, November.
    7. Kamau, J.N. & Kinyua, R. & Gathua, J.K., 2010. "6 years of wind data for Marsabit, Kenya average over 14m/s at 100m hub height; An analysis of the wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1298-1302.
    8. Gutiérrez, R. & Nafidi, A. & Gutiérrez Sánchez, R., 2005. "Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model," Applied Energy, Elsevier, vol. 80(2), pages 115-124, February.
    9. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    10. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    11. Santiago Pindado & Carlos Pindado & Javier Cubas, 2017. "Fréchet Distribution Applied to Salary Incomes in Spain from 1999 to 2014. An Engineering Approach to Changes in Salaries’ Distribution," Economies, MDPI, vol. 5(2), pages 1-19, May.
    12. Ahmed Nafidi & Ilyasse Makroz & Ramón Gutiérrez Sánchez, 2021. "A Stochastic Lomax Diffusion Process: Statistical Inference and Application," Mathematics, MDPI, vol. 9(1), pages 1-9, January.
    13. Zhou, Chenyu & Shen, Yun & Wu, Haixin & Wang, Jianhong, 2022. "Using fractional discrete Verhulst model to forecast Fujian's electricity consumption in China," Energy, Elsevier, vol. 255(C).
    14. Farihan Mohamad & Jiashen Teh & Ching-Ming Lai & Liang-Rui Chen, 2018. "Development of Energy Storage Systems for Power Network Reliability: A Review," Energies, MDPI, vol. 11(9), pages 1-19, August.
    15. Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
    16. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    17. Morales, J.M. & Mínguez, R. & Conejo, A.J., 2010. "A methodology to generate statistically dependent wind speed scenarios," Applied Energy, Elsevier, vol. 87(3), pages 843-855, March.
    18. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    19. Alonzo, Bastien & Ringkjob, Hans-Kristian & Jourdier, Benedicte & Drobinski, Philippe & Plougonven, Riwal & Tankov, Peter, 2017. "Modelling the variability of the wind energy resource on monthly and seasonal timescales," Renewable Energy, Elsevier, vol. 113(C), pages 1434-1446.
    20. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:348:y:2019:i:c:p:575-587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.