IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v321y2022ics0306261922006262.html
   My bibliography  Save this item

Review and prospect of data-driven techniques for load forecasting in integrated energy systems

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Zhiwei & Zhao, Weicheng & Lin, Xiaoyong & Han, Yongming & Hu, Xuan & Yuan, Kui & Geng, Zhiqiang, 2024. "Load prediction of integrated energy systems for energy saving and carbon emission based on novel multi-scale fusion convolutional neural network," Energy, Elsevier, vol. 290(C).
  2. Li, Peng & Wang, Jiahao & Jia, Hongjie & Li, Jianfeng & Pan, Youpeng, 2024. "Operation optimization of community integrated energy system: Rationality evaluation of operation scheme and a new solution approach," Applied Energy, Elsevier, vol. 375(C).
  3. Guo, Jiacheng & Wu, Di & Wang, Yuanyuan & Wang, Liming & Guo, Hanyuan, 2023. "Co-optimization method research and comprehensive benefits analysis of regional integrated energy system," Applied Energy, Elsevier, vol. 340(C).
  4. Ma, Xin & Peng, Bo & Ma, Xiangxue & Tian, Changbin & Yan, Yi, 2023. "Multi-timescale optimization scheduling of regional integrated energy system based on source-load joint forecasting," Energy, Elsevier, vol. 283(C).
  5. Li, Xue & Shao, Junyan & Jiang, Tao & Chen, Houhe & Zhou, Yue & Zhang, Rufeng & Jia, Hongjie & Wu, Jianzhong, 2024. "A hierarchical test benchmark of integrated energy system in Northeast China," Applied Energy, Elsevier, vol. 374(C).
  6. Wang, Chuang & Zhao, Haishen & Liu, Yang & Fan, Guojin, 2024. "Minute-level ultra-short-term power load forecasting based on time series data features," Applied Energy, Elsevier, vol. 372(C).
  7. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
  8. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
  9. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
  10. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
  11. Liu, Dewen & Luo, Zhao & Qin, Jinghui & Wang, Hua & Wang, Gang & Li, Zhao & Zhao, Weijie & Shen, Xin, 2023. "Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading," Renewable Energy, Elsevier, vol. 218(C).
  12. Fan, Jingmin & Zhong, Mingwei & Guan, Yuanpeng & Yi, Siqi & Xu, Cancheng & Zhai, Yanpeng & Zhou, Yongwang, 2024. "An online long-term load forecasting method: Hierarchical highway network based on crisscross feature collaboration," Energy, Elsevier, vol. 299(C).
  13. Zheng, Weiye & Xu, Siyu & Lu, Hao & Wu, Wenchuan & Zhu, Jianquan, 2024. "Trading mechanism for social welfare maximization in integrated electricity and heat systems with multiple self-interested stakeholders," Energy, Elsevier, vol. 306(C).
  14. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2024. "Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism," Applied Energy, Elsevier, vol. 360(C).
  15. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
  16. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
  17. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
  18. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
  19. Xie, Xiangmin & Ding, Yuhao & Sun, Yuanyuan & Zhang, Zhisheng & Fan, Jianhua, 2024. "A novel time-series probabilistic forecasting method for multi-energy loads," Energy, Elsevier, vol. 306(C).
  20. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
  21. Quota Alief Sias & Rahma Gantassi & Yonghoon Choi & Jeong Hwan Bae, 2024. "Recurrence Multilinear Regression Technique for Improving Accuracy of Energy Prediction in Power Systems," Energies, MDPI, vol. 17(20), pages 1-15, October.
  22. Liu, Tianhao & Tian, Jun & Zhu, Hongyu & Goh, Hui Hwang & Liu, Hui & Wu, Thomas & Zhang, Dongdong, 2023. "Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation," Energy, Elsevier, vol. 277(C).
  23. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
  24. Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
  25. Xin Zhao & Qiushuang Li & Wanlei Xue & Yihang Zhao & Huiru Zhao & Sen Guo, 2022. "Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price and Window-Based XGBoost Model," Energies, MDPI, vol. 15(19), pages 1-11, October.
  26. Zhiyuan Zhang & Zhanshan Wang, 2023. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network," Mathematics, MDPI, vol. 11(20), pages 1-18, October.
  27. Junhao Zhao & Xiaodong Shen & Youbo Liu & Junyong Liu & Xisheng Tang, 2024. "Enhancing Aggregate Load Forecasting Accuracy with Adversarial Graph Convolutional Imputation Network and Learnable Adjacency Matrix," Energies, MDPI, vol. 17(18), pages 1-28, September.
  28. Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
  29. Khalid, Muhammad, 2024. "A techno-economic framework for optimizing multi-area power dispatch in microgrids with tie-line constraints," Renewable Energy, Elsevier, vol. 231(C).
  30. Yitao Zhao & Xin Lv & Xin Shen & Gang Wang & Zhao Li & Pinqin Yu & Zhao Luo, 2023. "Determination of Weights for the Integrated Energy System Assessment Index with Electrical Energy Substitution in the Dual Carbon Context," Energies, MDPI, vol. 16(4), pages 1-15, February.
  31. Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.