IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i20p5186-d1501336.html
   My bibliography  Save this article

Recurrence Multilinear Regression Technique for Improving Accuracy of Energy Prediction in Power Systems

Author

Listed:
  • Quota Alief Sias

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Rahma Gantassi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Yonghoon Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea)

  • Jeong Hwan Bae

    (Department of Economics, Chonnam National University, Gwangju 61186, Republic of Korea)

Abstract

This paper demonstrates how artificial intelligence can be implemented in order to predict the energy needs of daily households using both multilinear regression (MLR) and single linear regression (SLR) methods. As a basic implementation, the SLR makes use of one input variable, which is the total amount of energy generated as an input. The MLR implementation involves multiple input variables being taken from various energy sources, including gas, coal, geothermal, wind, water, biomass, oil, etc. All of these variables are derived from detailed energy production data from the various energy sources. The purpose of this paper is to demonstrate that it is possible to analyze energy demand and supply directly together as a way to produce a more in-depth analysis. By analyzing energy production data from previous periods of time, a prediction of energy demand can be made. Compared to the SLR implementation, the MLR implementation is found to perform better because it is able to achieve a smaller error value. Furthermore, the forecasting pattern is carried out sequentially based on a periodic pattern, so this paper calls this method the recurrence multilinear regression (RMLR) method. This paper also creates a pre-clustering using the K-Means algorithm before the energy prediction to improve accuracy. Other models such as exponential GPR, sequential XGBoost, and seq2seq LSTM are used for comparison. The prediction results are evaluated by calculating the MAE, RMSE, MAPE, MAPA, and time execution for all models. The simulation results show that the fastest and best model that obtains the smallest error (3.4%) is the RMLR clustered using a weekly pattern period.

Suggested Citation

  • Quota Alief Sias & Rahma Gantassi & Yonghoon Choi & Jeong Hwan Bae, 2024. "Recurrence Multilinear Regression Technique for Improving Accuracy of Energy Prediction in Power Systems," Energies, MDPI, vol. 17(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5186-:d:1501336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/20/5186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/20/5186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanhang Qi & Haoyu Luo & Yuhui Luo & Rixu Liao & Liwei Ye, 2023. "Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-15, August.
    2. Alex Sleiman & Wencong Su, 2024. "Combined K-Means Clustering with Neural Networks Methods for PV Short-Term Generation Load Forecasting in Electric Utilities," Energies, MDPI, vol. 17(6), pages 1-27, March.
    3. Wang, Wei & Feng, Bin & Huang, Gang & Guo, Chuangxin & Liao, Wenlong & Chen, Zhe, 2023. "Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction," Applied Energy, Elsevier, vol. 333(C).
    4. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    5. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    2. Peng Liu & Tieyan Zhang & Furui Tian & Yun Teng & Miaodong Yang, 2024. "Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory," Energies, MDPI, vol. 17(24), pages 1-20, December.
    3. Héctor Chávez & Yuri Molina, 2025. "Geospatial Forecasting of Electric Energy in Distribution Systems Using Segmentation and Machine Learning with Convolutional Methods," Energies, MDPI, vol. 18(2), pages 1-28, January.
    4. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    5. Zhiyuan Zhang & Zhanshan Wang, 2023. "Multi-Objective Prediction of Integrated Energy System Using Generative Tractive Network," Mathematics, MDPI, vol. 11(20), pages 1-18, October.
    6. Junhao Zhao & Xiaodong Shen & Youbo Liu & Junyong Liu & Xisheng Tang, 2024. "Enhancing Aggregate Load Forecasting Accuracy with Adversarial Graph Convolutional Imputation Network and Learnable Adjacency Matrix," Energies, MDPI, vol. 17(18), pages 1-28, September.
    7. Yitao Zhao & Xin Lv & Xin Shen & Gang Wang & Zhao Li & Pinqin Yu & Zhao Luo, 2023. "Determination of Weights for the Integrated Energy System Assessment Index with Electrical Energy Substitution in the Dual Carbon Context," Energies, MDPI, vol. 16(4), pages 1-15, February.
    8. Ma, Xin & Peng, Bo & Ma, Xiangxue & Tian, Changbin & Yan, Yi, 2023. "Multi-timescale optimization scheduling of regional integrated energy system based on source-load joint forecasting," Energy, Elsevier, vol. 283(C).
    9. Li, Xue & Shao, Junyan & Jiang, Tao & Chen, Houhe & Zhou, Yue & Zhang, Rufeng & Jia, Hongjie & Wu, Jianzhong, 2024. "A hierarchical test benchmark of integrated energy system in Northeast China," Applied Energy, Elsevier, vol. 374(C).
    10. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
    11. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2024. "Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism," Applied Energy, Elsevier, vol. 360(C).
    12. Chen, Haoyu & Huang, Hai & Zheng, Yong & Yang, Bing, 2024. "A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model," Applied Energy, Elsevier, vol. 375(C).
    13. Jiakang Wang & Hui Liu & Guangji Zheng & Ye Li & Shi Yin, 2023. "Short-Term Load Forecasting Based on Outlier Correction, Decomposition, and Ensemble Reinforcement Learning," Energies, MDPI, vol. 16(11), pages 1-16, May.
    14. Li, Peng & Wang, Jiahao & Jia, Hongjie & Li, Jianfeng & Pan, Youpeng, 2024. "Operation optimization of community integrated energy system: Rationality evaluation of operation scheme and a new solution approach," Applied Energy, Elsevier, vol. 375(C).
    15. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
    16. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
    17. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    19. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Towards a Common Methodology and Modelling Tool for 100% Renewable Energy Analysis: A Review," Energies, MDPI, vol. 16(18), pages 1-42, September.
    20. Dong, Xiaochong & Sun, Yingyun & Dong, Lei & Li, Jian & Li, Yan & Di, Lei, 2023. "Transferable wind power probabilistic forecasting based on multi-domain adversarial networks," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:20:p:5186-:d:1501336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.