IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6386-d1547157.html
   My bibliography  Save this article

Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory

Author

Listed:
  • Peng Liu

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110000, China)

  • Tieyan Zhang

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110000, China)

  • Furui Tian

    (State Grid Zhejiang Electric Power Company, Ltd., Zhuji Power Supply Company, Zhuji 311800, China)

  • Yun Teng

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110000, China)

  • Miaodong Yang

    (Liaoning Qinghe Power Generation Company Ltd., Tieling 112003, China)

Abstract

This study introduces a multi-criteria decision-making (MCDM) framework for optimizing multi-energy network scheduling (MENS). As energy systems become more complex, the need for adaptable solutions that balance consumer demand with environmental sustainability grows. The proposed approach integrates conventional and alternative energy sources, addressing uncertainties through fermatean fuzzy sets (FFS), which enhances decision-making flexibility and resilience. A key component of the framework is the use of stochastic optimization and cooperative game theory (CGT) to ensure efficiency and reliability in energy systems. To evaluate the importance of various scheduling criteria, the study applies the logarithmic percentage change-driven objective weighing (LOPCOW) method, offering a systematic way to assign weights. The weighted aggregated sum product assessment (WASPAS) method is then used to rank potential solutions. The hybrid scheduling alternative, combining distributed and centralized solutions, stands out as the best alternative, significantly improving resource optimization and system resilience. While implementation costs may increase, the hybrid approach balances flexibility and rigidity, optimizing resource use and ensuring system adaptability. This work provides a comprehensive framework that enhances the efficiency and sustainability of energy systems, helping decision-makers address fluctuating demands and renewable energy integration challenges.

Suggested Citation

  • Peng Liu & Tieyan Zhang & Furui Tian & Yun Teng & Miaodong Yang, 2024. "Hybrid Decision Support Framework for Energy Scheduling Using Stochastic Optimization and Cooperative Game Theory," Energies, MDPI, vol. 17(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6386-:d:1547157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yijian & Cui, Yang & Li, Yang & Xu, Yang, 2023. "Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning," Energy, Elsevier, vol. 280(C).
    2. Verzijlbergh, R.A. & De Vries, L.J. & Dijkema, G.P.J. & Herder, P.M., 2017. "Institutional challenges caused by the integration of renewable energy sources in the European electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 660-667.
    3. Xiedong Gao & Xinyan Zhang, 2024. "Robust Collaborative Scheduling Strategy for Multi-Microgrids of Renewable Energy Based on a Non-Cooperative Game and Profit Allocation Mechanism," Energies, MDPI, vol. 17(2), pages 1-22, January.
    4. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    5. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    6. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).
    7. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhui Qian & Jiachen Wang & Dejian Yang & Hongqiao Yin & Jiansheng Zhang, 2024. "An Optimization Strategy for Unit Commitment in High Wind Power Penetration Power Systems Considering Demand Response and Frequency Stability Constraints," Energies, MDPI, vol. 17(22), pages 1-15, November.
    2. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    3. Emmanuelle Reuter, 2022. "Hybrid business models in the sharing economy: The role of business model design for managing the environmental paradox," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 603-618, February.
    4. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    5. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    6. Xu, Jing & Wang, Xiaoying & Gu, Yujiong & Ma, Suxia, 2023. "A data-based day-ahead scheduling optimization approach for regional integrated energy systems with varying operating conditions," Energy, Elsevier, vol. 283(C).
    7. Mingshan Mo & Xinrui Xiong & Yunlong Wu & Zuyao Yu, 2023. "Deep-Reinforcement-Learning-Based Low-Carbon Economic Dispatch for Community-Integrated Energy System under Multiple Uncertainties," Energies, MDPI, vol. 16(22), pages 1-18, November.
    8. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    9. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    10. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    11. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    12. Lv, Hang & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "A two-stage decision-making approach for optimal design and operation of integrated energy systems considering multiple uncertainties and diverse resilience needs," Energy, Elsevier, vol. 305(C).
    13. Hugo Radet & Bruno Sareni & Xavier Roboam, 2023. "Synthesis of Solar Production and Energy Demand Profiles Using Markov Chains for Microgrid Design," Energies, MDPI, vol. 16(23), pages 1-12, December.
    14. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    15. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    16. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    17. Zeynali, Saeed & Nasiri, Nima & Ravadanegh, Sajad Najafi & Marzband, Mousa, 2022. "A three-level framework for strategic participation of aggregated electric vehicle-owning households in local electricity and thermal energy markets," Applied Energy, Elsevier, vol. 324(C).
    18. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    19. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    20. David Morillón Gálvez & Iván García Kerdan & Germán Carmona-Paredes, 2022. "Assessing the Potential of Implementing a Solar-Based Distributed Energy System for a University Using the Campus Bus Stops," Energies, MDPI, vol. 15(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6386-:d:1547157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.