IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v248y2019icp44-53.html
   My bibliography  Save this item

A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Shiyou & Peng, Keming & Wei, Wenlong & Tang, Siqi & Yao, Jin, 2021. "The matrix method of energy analysis and energy-saving design on the electromechanical system," Energy, Elsevier, vol. 224(C).
  2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
  3. Chakraborty, Debaditya & Alam, Arafat & Chaudhuri, Saptarshi & Başağaoğlu, Hakan & Sulbaran, Tulio & Langar, Sandeep, 2021. "Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence," Applied Energy, Elsevier, vol. 291(C).
  4. Jonghoon Ahn, 2021. "Abatement of the Increases in Cooling Energy Use during a Period of Intense Heat by a Network-Based Adaptive Controller," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
  5. Yang, Ting & Zhao, Liyuan & Li, Wei & Wu, Jianzhong & Zomaya, Albert Y., 2021. "Towards healthy and cost-effective indoor environment management in smart homes: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 300(C).
  6. Qingwen, Wang & XiaoHui, Chu & Chao, Yu, 2024. "Modeling of heat gain through green roofs utilizing artificial intelligence techniques," Energy, Elsevier, vol. 303(C).
  7. Salins, Sampath Suranjan & Kota Reddy, S.V. & Shiva Kumar,, 2021. "Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier," Applied Energy, Elsevier, vol. 293(C).
  8. Dasheng Lee & Fu-Po Tsai, 2020. "Air Conditioning Energy Saving from Cloud-Based Artificial Intelligence: Case Study of a Split-Type Air Conditioner," Energies, MDPI, vol. 13(8), pages 1-25, April.
  9. Wenping Xue & Xiao Cao & Guangfa Zhang & Gang Tan & Zilong Liu & Kangji Li, 2022. "Structural Optimization of Heat Sink for Thermoelectric Conversion Unit in Personal Comfort System," Energies, MDPI, vol. 15(8), pages 1-16, April.
  10. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
  11. Zhang, Xiang & Rasmussen, Christoffer & Saelens, Dirk & Roels, Staf, 2022. "Time-dependent solar aperture estimation of a building: Comparing grey-box and white-box approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  12. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
  13. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
  14. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
  15. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  16. Cheng, Fanyong & Cui, Can & Cai, Wenjian & Zhang, Xin & Ge, Yuan & Li, Bingxu, 2022. "A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system," Energy, Elsevier, vol. 239(PB).
  17. Varlamis, Iraklis & Sardianos, Christos & Chronis, Christos & Dimitrakopoulos, George & Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2022. "Smart fusion of sensor data and human feedback for personalized energy-saving recommendations," Applied Energy, Elsevier, vol. 305(C).
  18. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
  19. Nastro, Francesco & Sorrentino, Marco & Trifirò, Alena, 2022. "A machine learning approach based on neural networks for energy diagnosis of telecommunication sites," Energy, Elsevier, vol. 245(C).
  20. Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).
  21. Frank Florez & Jesús Alejandro Alzate-Grisales & Pedro Fernández de Córdoba & John Alexander Taborda-Giraldo, 2023. "Methodology for Modeling Multiple Non-Homogeneous Thermal Zones Using Lumped Parameters Technique and Graph Theory," Energies, MDPI, vol. 16(6), pages 1-20, March.
  22. Wang, Cheng & Liu, Chuang & Lin, Yuzhang & Bi, Tianshu, 2020. "Day-ahead dispatch of integrated electric-heat systems considering weather-parameter-driven residential thermal demands," Energy, Elsevier, vol. 203(C).
  23. Hossein Moayedi & Bao Le Van, 2022. "Feasibility of Harris Hawks Optimization in Combination with Fuzzy Inference System Predicting Heating Load Energy Inside Buildings," Energies, MDPI, vol. 15(23), pages 1-17, December.
  24. López-Pérez, Luis Adrián & Flores-Prieto, José Jassón, 2023. "Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence," Energy, Elsevier, vol. 263(PA).
  25. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
  26. Yafei Zhao & Paolo Vincenzo Genovese & Zhixing Li, 2020. "Intelligent Thermal Comfort Controlling System for Buildings Based on IoT and AI," Future Internet, MDPI, vol. 12(2), pages 1-18, February.
  27. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  28. Hu, Jingfan & Zheng, Wandong & Zhang, Sirui & Li, Hao & Liu, Zijian & Zhang, Guo & Yang, Xu, 2021. "Thermal load prediction and operation optimization of office building with a zone-level artificial neural network and rule-based control," Applied Energy, Elsevier, vol. 300(C).
  29. Lin Pan & Sheng Wang & Jiying Wang & Min Xiao & Zhirong Tan, 2022. "Research on Central Air Conditioning Systems and an Intelligent Prediction Model of Building Energy Load," Energies, MDPI, vol. 15(24), pages 1-31, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.