Abatement of the Increases in Cooling Energy Use during a Period of Intense Heat by a Network-Based Adaptive Controller
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sung Hoon Yoon & Jonghoon Ahn, 2020. "Comparative Analysis of Energy Use and Human Comfort by an Intelligent Control Model at the Change of Season," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Hu, Shushan & Hoare, Cathal & Raftery, Paul & O’Donnell, James, 2019. "Environmental and energy performance assessment of buildings using scenario modelling and fuzzy analytic network process," Applied Energy, Elsevier, vol. 255(C).
- Spandagos, Constantine & Ng, Tze Ling, 2018. "Fuzzy model of residential energy decision-making considering behavioral economic concepts," Applied Energy, Elsevier, vol. 213(C), pages 611-625.
- Singh, Manoj Kumar & Attia, Shady & Mahapatra, Sadhan & Teller, Jacques, 2016. "Assessment of thermal comfort in existing pre-1945 residential building stock," Energy, Elsevier, vol. 98(C), pages 122-134.
- Bożena Babiarz & Władysław Szymański, 2020. "Introduction to the Dynamics of Heat Transfer in Buildings," Energies, MDPI, vol. 13(23), pages 1-28, December.
- Kuldeep Kurte & Jeffrey Munk & Olivera Kotevska & Kadir Amasyali & Robert Smith & Evan McKee & Yan Du & Borui Cui & Teja Kuruganti & Helia Zandi, 2020. "Evaluating the Adaptability of Reinforcement Learning Based HVAC Control for Residential Houses," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
- Chaudhuri, Tanaya & Soh, Yeng Chai & Li, Hua & Xie, Lihua, 2019. "A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings," Applied Energy, Elsevier, vol. 248(C), pages 44-53.
- Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
- Jonghoon Ahn, 2020. "Performance Analyses of Temperature Controls by a Network-Based Learning Controller for an Indoor Space in a Cold Area," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
- Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
- Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
- Branko Simanic & Birgitta Nordquist & Hans Bagge & Dennis Johansson, 2020. "Influence of User-Related Parameters on Calculated Energy Use in Low-Energy School Buildings," Energies, MDPI, vol. 13(11), pages 1-14, June.
- Wong, S.L. & Wan, Kevin K.W. & Lam, Tony N.T., 2010. "Artificial neural networks for energy analysis of office buildings with daylighting," Applied Energy, Elsevier, vol. 87(2), pages 551-557, February.
- Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
- Jonghoon Ahn, 2020. "Improvement of the Performance Balance between Thermal Comfort and Energy Use for a Building Space in the Mid-Spring Season," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jonghoon Ahn, 2022. "A Network-Based Strategy to Increase the Sustainability of Building Supply Air Systems Responding to Unexpected Temperature Patterns," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sung Hoon Yoon & Jonghoon Ahn, 2020. "Comparative Analysis of Energy Use and Human Comfort by an Intelligent Control Model at the Change of Season," Energies, MDPI, vol. 13(22), pages 1-15, November.
- Jonghoon Ahn, 2020. "Improvement of the Performance Balance between Thermal Comfort and Energy Use for a Building Space in the Mid-Spring Season," Sustainability, MDPI, vol. 12(22), pages 1-14, November.
- Jonghoon Ahn, 2020. "Performance Analyses of Temperature Controls by a Network-Based Learning Controller for an Indoor Space in a Cold Area," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
- Jonghoon Ahn, 2022. "A Network-Based Strategy to Increase the Sustainability of Building Supply Air Systems Responding to Unexpected Temperature Patterns," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
- Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
- Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
- Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Ahn, Jonghoon & Chung, Dae Hun & Cho, Soolyeon, 2018. "Energy cost analysis of an intelligent building network adopting heat trading concept in a district heating model," Energy, Elsevier, vol. 151(C), pages 11-25.
- Jinrong Wu & Su Nguyen & Damminda Alahakoon & Daswin De Silva & Nishan Mills & Prabod Rathnayaka & Harsha Moraliyage & Andrew Jennings, 2024. "A Comparative Analysis of Machine Learning-Based Energy Baseline Models across Multiple Building Types," Energies, MDPI, vol. 17(6), pages 1-18, March.
- Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
- Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
- Alexandru Pîrjan & Simona-Vasilica Oprea & George Căruțașu & Dana-Mihaela Petroșanu & Adela Bâra & Cristina Coculescu, 2017. "Devising Hourly Forecasting Solutions Regarding Electricity Consumption in the Case of Commercial Center Type Consumers," Energies, MDPI, vol. 10(11), pages 1-36, October.
- Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
- Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
- Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
- Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
- Aiman Albatayneh & Dariusz Alterman & Adrian Page & Behdad Moghtaderi, 2019. "The Significance of the Adaptive Thermal Comfort Limits on the Air-Conditioning Loads in a Temperate Climate," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
- Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
- Shady Attia, 2020. "Spatial and Behavioral Thermal Adaptation in Net Zero Energy Buildings: An Exploratory Investigation," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
More about this item
Keywords
cooling energy; thermal comfort; adaptive control; fuzzy logic; neural network; heat-intensive day;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1353-:d:488481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.