IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v242y2019icp311-333.html
   My bibliography  Save this item

Modelling and forecasting hourly electricity demand in West African countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  2. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
  3. Jin, Haowei & Guo, Jue & Tang, Lei & Du, Pei, 2024. "Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix," Energy, Elsevier, vol. 286(C).
  4. Mohsin, Muhammad & Taghizadeh-Hesary, Farhad & Iqbal, Nadeem & Saydaliev, Hayot Berk, 2022. "The role of technological progress and renewable energy deployment in green economic growth," Renewable Energy, Elsevier, vol. 190(C), pages 777-787.
  5. Komlan Hector Seth Tete & Yrébégnan Moussa Soro & Djerambete Aristide Nadjingar & Rory Victor Jones, 2024. "Ownership, Patterns of Use and Electricity Consumption of Domestic Appliances in Urban Households of the West African Monetary and Economic Union: A Case Study of Ouagadougou in Burkina Faso," Energies, MDPI, vol. 17(15), pages 1-39, July.
  6. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
  7. Kanyako, Franklyn & Lamontagne, Jonathan & Baker, Erin & Turner, Sean & Wild, Thomas, 2023. "Seasonality and trade in hydro-heavy electricity markets: A case study with the West Africa Power Pool (WAPP)," Applied Energy, Elsevier, vol. 329(C).
  8. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
  9. Zheng, Shuguang & Huang, Guohe & Zhou, Xiong & Zhu, Xiaohang, 2020. "Climate-change impacts on electricity demands at a metropolitan scale: A case study of Guangzhou, China," Applied Energy, Elsevier, vol. 261(C).
  10. Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  11. Adeoye, Omotola & Spataru, Catalina, 2020. "Quantifying the integration of renewable energy sources in West Africa's interconnected electricity network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  12. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
  13. David I. Okorie, 2021. "A network analysis of electricity demand and the cryptocurrency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 3093-3108, April.
  14. Hamagham Peter Ishaku & Humphrey Adun & Moein Jazayeri & Mehmet Kusaf, 2022. "Decarbonisation Strategy for Renewable Energy Integration for Electrification of West African Nations: A Bottom-Up EnergyPLAN Modelling of West African Power Pool Targets," Sustainability, MDPI, vol. 14(23), pages 1-36, November.
  15. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  16. Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
  17. Neve Fields & William Collier & Fynn Kiley & David Caulker & William Blyth & Mark Howells & Ed Brown, 2024. "Long-Term Forecasting: A MAED Application for Sierra Leone’s Electricity Demand (2023–2050)," Energies, MDPI, vol. 17(12), pages 1-17, June.
  18. Michal Pavlicko & Mária Vojteková & Oľga Blažeková, 2022. "Forecasting of Electrical Energy Consumption in Slovakia," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
  19. Abid, Hamza & Thakur, Jagruti & Khatiwada, Dilip & Bauner, David, 2021. "Energy storage integration with solar PV for increased electricity access: A case study of Burkina Faso," Energy, Elsevier, vol. 230(C).
  20. Abdul Conteh & Mohammed Elsayed Lotfy & Oludamilare Bode Adewuyi & Paras Mandal & Hiroshi Takahashi & Tomonobu Senjyu, 2020. "Demand Response Economic Assessment with the Integration of Renewable Energy for Developing Electricity Markets," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
  21. Chris Matthew & Catalina Spataru, 2023. "Time-Use Data Modelling of Domestic, Commercial and Industrial Electricity Demand for the Scottish Islands," Energies, MDPI, vol. 16(13), pages 1-25, June.
  22. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
  23. Kondi-Akara, Ghafi & Hingray, Benoit & Francois, Baptiste & Diedhiou, Arona, 2023. "Recent trends in urban electricity consumption for cooling in West and Central African countries," Energy, Elsevier, vol. 276(C).
  24. Guefano, Serge & Tamba, Jean Gaston & Azong, Tchitile Emmanuel Wilfried & Monkam, Louis, 2021. "Forecast of electricity consumption in the Cameroonian residential sector by Grey and vector autoregressive models," Energy, Elsevier, vol. 214(C).
  25. Wu, Han & Liang, Yan & Heng, Jiani, 2023. "Pulse-diagnosis-inspired multi-feature extraction deep network for short-term electricity load forecasting," Applied Energy, Elsevier, vol. 339(C).
  26. Di Leo, Senatro & Caramuta, Pietro & Curci, Paola & Cosmi, Carmelina, 2020. "Regression analysis for energy demand projection: An application to TIMES-Basilicata and TIMES-Italy energy models," Energy, Elsevier, vol. 196(C).
  27. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.