IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v233-234y2019ip975-984.html
   My bibliography  Save this item

A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
  2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
  3. Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
  4. Qian, Yaoru & Wang, Tongguang & Yuan, Yiping & Zhang, Yuquan, 2020. "Comparative study on wind turbine wakes using a modified partially-averaged Navier-Stokes method and large eddy simulation," Energy, Elsevier, vol. 206(C).
  5. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
  6. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
  7. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
  8. Zhang, Shaohai & Gao, Xiaoxia & Ma, Wanli & Lu, Hongkun & Lv, Tao & Xu, Shinai & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu, 2023. "Derivation and verification of three-dimensional wake model of multiple wind turbines based on super-Gaussian function," Renewable Energy, Elsevier, vol. 215(C).
  9. Ju, Xinglong & Liu, Feng, 2019. "Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation," Applied Energy, Elsevier, vol. 248(C), pages 429-445.
  10. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
  11. Meng, Hang & Li, Li & Zhang, Jinhua, 2020. "A preliminary numerical study of the wake effects on the fatigue load for wind farm based on elastic actuator line model," Renewable Energy, Elsevier, vol. 162(C), pages 788-801.
  12. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
  13. Yang, Haoze & Ge, Mingwei & Abkar, Mahdi & Yang, Xiang I.A., 2022. "Large-eddy simulation study of wind turbine array above swell sea," Energy, Elsevier, vol. 256(C).
  14. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
  15. Xiaolei Yang & Fotis Sotiropoulos, 2019. "A Review on the Meandering of Wind Turbine Wakes," Energies, MDPI, vol. 12(24), pages 1-20, December.
  16. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
  17. Ge, Mingwei & Zhang, Shuaibin & Meng, Hang & Ma, Hongliang, 2020. "Study on interaction between the wind-turbine wake and the urban district model by large eddy simulation," Renewable Energy, Elsevier, vol. 157(C), pages 941-950.
  18. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
  19. Xiaohao Liu & Zhaobin Li & Xiaolei Yang & Duo Xu & Seokkoo Kang & Ali Khosronejad, 2022. "Large-Eddy Simulation of Wakes of Waked Wind Turbines," Energies, MDPI, vol. 15(8), pages 1-26, April.
  20. He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
  21. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Yang, Xiang I.A., 2019. "A two-dimensional Jensen model with a Gaussian-shaped velocity deficit," Renewable Energy, Elsevier, vol. 141(C), pages 46-56.
  22. Kyle A. Schau & Gopal Gaonkar & Vaishakh Krishnan, 2018. "On Modelling Wind-Farm Wake Turbulence Autospectra and Coherence from a Database," Energies, MDPI, vol. 12(1), pages 1-15, December.
  23. Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).
  24. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
  25. Jianhua Xu & Zhonghua Han & Xiaochao Yan & Wenping Song, 2019. "Design Optimization of a Multi-Megawatt Wind Turbine Blade with the NPU-MWA Airfoil Family," Energies, MDPI, vol. 12(17), pages 1-24, August.
  26. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
  27. Fan, Xiantao & Ge, Mingwei & Tan, Wei & Li, Qi, 2021. "Impacts of coexisting buildings and trees on the performance of rooftop wind turbines: An idealized numerical study," Renewable Energy, Elsevier, vol. 177(C), pages 164-180.
  28. Guangchao Zhang & Shi Liu, 2023. "Reconstruction of Unsteady Wind Field Based on CFD and Reduced-Order Model," Mathematics, MDPI, vol. 11(10), pages 1-25, May.
  29. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
  30. Dongqin Zhang & Yang Liang & Chao Li & Yiqing Xiao & Gang Hu, 2022. "Applicability of Wake Models to Predictions of Turbine-Induced Velocity Deficit and Wind Farm Power Generation," Energies, MDPI, vol. 15(19), pages 1-26, October.
  31. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
  32. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
  33. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
  34. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
  35. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
  36. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
  37. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
  38. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
  39. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
  40. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
  41. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
  42. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Wind farm layout optimization with a three-dimensional Gaussian wake model," Renewable Energy, Elsevier, vol. 159(C), pages 553-569.
  43. Cheng, Yu & Zhang, Mingming & Zhang, Ziliang & Xu, Jianzhong, 2019. "A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory," Applied Energy, Elsevier, vol. 239(C), pages 96-106.
  44. Li, Li & Huang, Zhi & Ge, Mingwei & Zhang, Qiying, 2022. "A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes," Energy, Elsevier, vol. 238(PB).
  45. Gao, Xiaoxia & Zhang, Shaohai & Li, Luqing & Xu, Shinai & Chen, Yao & Zhu, Xiaoxun & Sun, Haiying & Wang, Yu & Lu, Hao, 2022. "Quantification of 3D spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test," Energy, Elsevier, vol. 254(PA).
  46. Tian, Linlin & Song, Yilei & Xiao, Pengcheng & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling, 2022. "A new three-dimensional analytical model for wind turbine wake turbulence intensity predictions," Renewable Energy, Elsevier, vol. 189(C), pages 762-776.
  47. Kuichao Ma & Huanqiang Zhang & Xiaoxia Gao & Xiaodong Wang & Heng Nian & Wei Fan, 2024. "Research on Evaluation Method of Wind Farm Wake Energy Efficiency Loss Based on SCADA Data Analysis," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
  48. Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.