IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i10p2223-d1142619.html
   My bibliography  Save this article

Reconstruction of Unsteady Wind Field Based on CFD and Reduced-Order Model

Author

Listed:
  • Guangchao Zhang

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

  • Shi Liu

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

Short-term wind power forecasting is crucial for updating the wind power trading strategy, equipment protection and control regulation. To solve the difficulty surrounding the instability of the statistical model and the time-consuming nature of the physical model in short-term wind power forecasting, two innovative wind field reconstruction methods combining CFD and a reduced-order model were developed. In this study, POD and Tucker decomposition were employed to obtain the spatial–temporal information correlation of 2D and 3D wind fields, and their inverse processes were combined with sparse sensing to reconstruct multi-dimensional unsteady wind fields. Simulation and detailed discussion were performed to verify the practicability of the proposed algorithms. The simulation results indicate that the wind speed distributions could be reconstructed with reasonably high accuracy (where the absolute velocity relative error was less than 0.8%) using 20 sensors (which only accounted for 0.04% of the total data in the 3D wind field) based on the proposed algorithms. The factors influencing the results of reconstruction were systematically analyzed, including all-time steps, the number of basis vectors and 4-mode dimensions, the diversity of CFD databases, and the reconstruction time. The results indicated that the reconstruction time could be shortened to the time interval of data acquisition to synchronize data acquisition with wind field reconstruction, which is of great significance in the reconstruction of unsteady wind fields. Although there are still many studies to be carried out to achieve short-term predictions, both unsteady reconstruction methods proposed in this paper enable a new direction for short-term wind field prediction.

Suggested Citation

  • Guangchao Zhang & Shi Liu, 2023. "Reconstruction of Unsteady Wind Field Based on CFD and Reduced-Order Model," Mathematics, MDPI, vol. 11(10), pages 1-25, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2223-:d:1142619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/10/2223/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/10/2223/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Guo, Zhenhai & Zhao, Weigang & Lu, Haiyan & Wang, Jianzhou, 2012. "Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model," Renewable Energy, Elsevier, vol. 37(1), pages 241-249.
    3. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.
    4. Risky Utama Putra & Hasan Basri & Akbar Teguh Prakoso & Hendri Chandra & Muhammad Imam Ammarullah & Imam Akbar & Ardiyansyah Syahrom & Tunku Kamarul, 2023. "Level of Activity Changes Increases the Fatigue Life of the Porous Magnesium Scaffold, as Observed in Dynamic Immersion Tests, over Time," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
    5. Wang, Han & Han, Shuang & Liu, Yongqian & Yan, Jie & Li, Li, 2019. "Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system," Applied Energy, Elsevier, vol. 237(C), pages 1-10.
    6. Muhammad Imam Ammarullah & Gatot Santoso & S. Sugiharto & Toto Supriyono & Dwi Basuki Wibowo & Ojo Kurdi & Mohammad Tauviqirrahman & J. Jamari, 2022. "Minimizing Risk of Failure from Ceramic-on-Ceramic Total Hip Prosthesis by Selecting Ceramic Materials Based on Tresca Stress," Sustainability, MDPI, vol. 14(20), pages 1-12, October.
    7. Zhang, Guangchao & Zheng, Xiaoxiao & Liu, Shi & Chen, Minxin, 2022. "Three-dimensional wind field reconstruction using tucker decomposition with optimal sensor placement," Energy, Elsevier, vol. 260(C).
    8. Jiang, Ping & Wang, Yun & Wang, Jianzhou, 2017. "Short-term wind speed forecasting using a hybrid model," Energy, Elsevier, vol. 119(C), pages 561-577.
    9. Zhang, Jie & Draxl, Caroline & Hopson, Thomas & Monache, Luca Delle & Vanvyve, Emilie & Hodge, Bri-Mathias, 2015. "Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods," Applied Energy, Elsevier, vol. 156(C), pages 528-541.
    10. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    11. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    12. Qin, Li & Liu, Shi & Long, Teng & Shahzad, Muhammad Ali & Schlaberg, H. Inaki & Yan, Song An, 2018. "Wind field reconstruction using dimension-reduction of CFD data with experimental validation," Energy, Elsevier, vol. 151(C), pages 272-288.
    13. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Song & Yang Yu & Jianxing Yu & Shibo Wu & Jiandong Ma & Zihang Jin, 2024. "An Innovative Method for Wind Load Estimation in High-Rise Buildings Based on Green’s Function," Mathematics, MDPI, vol. 12(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    2. Zhang, Guangchao & Zheng, Xiaoxiao & Liu, Shi & Chen, Minxin, 2022. "Three-dimensional wind field reconstruction using tucker decomposition with optimal sensor placement," Energy, Elsevier, vol. 260(C).
    3. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    4. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    5. Pei Du & Yu Jin & Kequan Zhang, 2016. "A Hybrid Multi-Step Rolling Forecasting Model Based on SSA and Simulated Annealing—Adaptive Particle Swarm Optimization for Wind Speed," Sustainability, MDPI, vol. 8(8), pages 1-25, August.
    6. Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
    7. Wang, Jianzhou & Qin, Shanshan & Zhou, Qingping & Jiang, Haiyan, 2015. "Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China," Renewable Energy, Elsevier, vol. 76(C), pages 91-101.
    8. Zhang, Zhendong & Ye, Lei & Qin, Hui & Liu, Yongqi & Wang, Chao & Yu, Xiang & Yin, Xingli & Li, Jie, 2019. "Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression," Applied Energy, Elsevier, vol. 247(C), pages 270-284.
    9. Zhang, Chi & Wei, Haikun & Zhao, Junsheng & Liu, Tianhong & Zhu, Tingting & Zhang, Kanjian, 2016. "Short-term wind speed forecasting using empirical mode decomposition and feature selection," Renewable Energy, Elsevier, vol. 96(PA), pages 727-737.
    10. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    11. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    12. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    13. Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    14. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    15. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    16. Hu, Jianming & Wang, Jianzhou & Ma, Kailiang, 2015. "A hybrid technique for short-term wind speed prediction," Energy, Elsevier, vol. 81(C), pages 563-574.
    17. Wu, Xuedong & Zhu, Zhiyu & Su, Xunliang & Fan, Shaosheng & Du, Zhaoping & Chang, Yanchao & Zeng, Qingjun, 2015. "A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction," Energy, Elsevier, vol. 88(C), pages 194-201.
    18. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    19. Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
    20. Liu, Yi & Wang, Ranpeng & Gu, Yin & Li, Congjian & Wang, Gangqiao, 2024. "Physics-inspired and data-driven two-stage deep learning approach for wind field reconstruction with experimental validation," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:10:p:2223-:d:1142619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.