IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v190y2017icp800-812.html
   My bibliography  Save this item

Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Cao, Sunliang & Alanne, Kari, 2018. "The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle," Applied Energy, Elsevier, vol. 211(C), pages 639-661.
  2. Askeland, Magnus & Backe, Stian & Bjarghov, Sigurd & Korpås, Magnus, 2021. "Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs," Energy Economics, Elsevier, vol. 94(C).
  3. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
  4. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  5. Gabriel Ayobami Ogunkunbi & Havraz Khedhir Younis Al-Zibaree & Ferenc Meszaros, 2022. "Modeling and Evaluation of Market Incentives for Battery Electric Vehicles," Sustainability, MDPI, vol. 14(7), pages 1-11, April.
  6. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
  7. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
  8. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
  9. Kern, Timo & Dossow, Patrick & Morlock, Elena, 2022. "Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes," Applied Energy, Elsevier, vol. 307(C).
  10. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
  11. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
  12. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
  13. Yousefi, Mojtaba & Hajizadeh, Amin & Soltani, Mohsen N. & Hredzak, Branislav & Kianpoor, Nasrin, 2020. "Profit assessment of home energy management system for buildings with A-G energy labels," Applied Energy, Elsevier, vol. 277(C).
  14. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Working Papers "Sustainability and Innovation" S04/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
  15. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
  16. Marszal-Pomianowska, Anna & Widén, Joakim & Le Dréau, Jérôme & Heiselberg, Per & Bak-Jensen, Birgitte & de Cerio Mendaza, Iker Diaz, 2020. "Operation of power distribution networks with new and flexible loads: A case of existing residential low voltage network," Energy, Elsevier, vol. 202(C).
  17. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
  18. Mortazavi, Bohayra & Yang, Hongliu & Mohebbi, Farzad & Cuniberti, Gianaurelio & Rabczuk, Timon, 2017. "Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation," Applied Energy, Elsevier, vol. 202(C), pages 323-334.
  19. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
  20. Juha Koskela & Pertti Järventausta, 2023. "Demand Response with Electrical Heating in Detached Houses in Finland and Comparison with BESS for Increasing PV Self-Consumption," Energies, MDPI, vol. 16(1), pages 1-25, January.
  21. Lin, Haiyang & Liu, Yiling & Sun, Qie & Xiong, Rui & Li, Hailong & Wennersten, Ronald, 2018. "The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation," Applied Energy, Elsevier, vol. 230(C), pages 189-206.
  22. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Energy, Elsevier, vol. 249(C).
  23. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  24. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
  25. McGarry, Connor & Dixon, James & Flower, Jack & Bukhsh, Waqquas & Brand, Christian & Bell, Keith & Galloway, Stuart, 2024. "Electrified heat and transport: Energy demand futures, their impacts on power networks and what it means for system flexibility," Applied Energy, Elsevier, vol. 360(C).
  26. Munankarmi, Prateek & Maguire, Jeff & Balamurugan, Sivasathya Pradha & Blonsky, Michael & Roberts, David & Jin, Xin, 2021. "Community-scale interaction of energy efficiency and demand flexibility in residential buildings," Applied Energy, Elsevier, vol. 298(C).
  27. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  28. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.