IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6099-d1536192.html
   My bibliography  Save this article

Rule-Based Energy Management System to Enhance PV Self-Consumption in a Building: A Real Case

Author

Listed:
  • Haritza Camblong

    (Department of Systems Engineering & Control, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Europa Plaza 1, E-20018 Donostia, Spain
    Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Irati Zapirain

    (Department of Systems Engineering & Control, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Europa Plaza 1, E-20018 Donostia, Spain
    ESTIA Institute of Technology, Technopole Izarbel, University of Bordeaux, 64210 Bidart, France)

  • Octavian Curea

    (ESTIA Institute of Technology, Technopole Izarbel, University of Bordeaux, 64210 Bidart, France)

  • Juanjo Ugartemendia

    (Department of Electrical Engineering, Faculty of Engineering of Gipuzkoa, University of the Basque Country (UPV/EHU), Europa Plaza 1, E-20018 Donostia, Spain)

  • Zina Boussaada

    (ESTIA Institute of Technology, Technopole Izarbel, University of Bordeaux, 64210 Bidart, France)

  • Ramon Zamora

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

Abstract

The building sector has an important role in the decarbonization of energy. Buildings energy management systems can act on flexible loads to contribute to the integration of renewable energies. This article presents the design, implementation and evaluation of a rule-based energy management systems (RB-EMS) in the frame of a collective self-consumption (CSC) system based on photovoltaic (PV) energy in the Technology Park of Izarbel, in Bidart, France. The RB-EMS acts on the heat ventilation and air conditioning (HVAC) system of one of the buildings involved in the CSC in order to maximize the PV energy self-consumption rate (SCR). Internet of things (IoT) has been developed and implemented in order to retrieve consumption, production and temperature data, and to be able to act on the HVAC. A new 5-step methodology has been developed to design and adjust the RB-EMS. This methodology is mainly based on tests carried out to find the relationship between ON/OFF states of the internal units of the HVAC and the heat pumps’ consumption. Finally, the RB-EMS is tested in heating operating mode. The results show that the RB-EMS allows obtaining a SCR of 89%, and that the users comfort limits are respected.

Suggested Citation

  • Haritza Camblong & Irati Zapirain & Octavian Curea & Juanjo Ugartemendia & Zina Boussaada & Ramon Zamora, 2024. "Rule-Based Energy Management System to Enhance PV Self-Consumption in a Building: A Real Case," Energies, MDPI, vol. 17(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6099-:d:1536192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    2. Li, Houpei & Zhang, Huifen & Zou, Bin & Peng, Jinqing, 2024. "A generalized study of photovoltaic driven air conditioning potential in cooling season in mainland China," Renewable Energy, Elsevier, vol. 223(C).
    3. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    4. Reynders, Glenn & Diriken, Jan & Saelens, Dirk, 2017. "Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings," Applied Energy, Elsevier, vol. 198(C), pages 192-202.
    5. Utama, Christian & Troitzsch, Sebastian & Thakur, Jagruti, 2021. "Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings," Applied Energy, Elsevier, vol. 285(C).
    6. Itxaso Aranzabal & Julen Gomez-Cornejo & Iraide López & Ander Zubiria & Javier Mazón & Ane Feijoo-Arostegui & Haizea Gaztañaga, 2023. "Optimal Management of an Energy Community with PV and Battery-Energy-Storage Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    3. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    4. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    5. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    6. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    7. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    8. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    9. Jennifer Date & José A. Candanedo & Andreas K. Athienitis, 2021. "A Methodology for the Enhancement of the Energy Flexibility and Contingency Response of a Building through Predictive Control of Passive and Active Storage," Energies, MDPI, vol. 14(5), pages 1-28, March.
    10. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Ivo Araújo & Leonel J. R. Nunes & David Patíño Vilas & António Curado, 2024. "Integrating Renewable Energy Produced by a Library Building on a University Campus in a Scenario of Collective Self-Consumption," Energies, MDPI, vol. 17(14), pages 1-17, July.
    12. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    13. Knudsen, Michael Dahl & Georges, Laurent & Skeie, Kristian Stenerud & Petersen, Steffen, 2021. "Experimental test of a black-box economic model predictive control for residential space heating," Applied Energy, Elsevier, vol. 298(C).
    14. Ribó-Pérez, David & Heleno, Miguel & Álvarez-Bel, Carlos, 2021. "The flexibility gap: Socioeconomic and geographical factors driving residential flexibility," Energy Policy, Elsevier, vol. 153(C).
    15. Mu, Yunfei & Xu, Yanze & Zhang, Jiarui & Wu, Zeqing & Jia, Hongjie & Jin, Xiaolong & Qi, Yan, 2023. "A data-driven rolling optimization control approach for building energy systems that integrate virtual energy storage systems," Applied Energy, Elsevier, vol. 346(C).
    16. Kern, Timo & Dossow, Patrick & Morlock, Elena, 2022. "Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes," Applied Energy, Elsevier, vol. 307(C).
    17. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    18. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    19. Kakkar, Riya & Agrawal, Smita & Tanwar, Sudeep, 2024. "A systematic survey on demand response management schemes for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    20. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6099-:d:1536192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.