IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v211y2018icp639-661.html
   My bibliography  Save this article

The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle

Author

Listed:
  • Cao, Sunliang
  • Alanne, Kari

Abstract

This study conducts a techno-economic analysis to seek the feasibility to integrate a zero-emission building (ZEB) with a commercial-scale hydrogen vehicle (HV). The parametric analysis is conducted in 16 simulation groups with respect to the equipment options of the solar thermal collectors, the ground source heat pump (GSHP) and the HV refueling methods, while each group contains a series of cases with a range of on-site renewable electricity (REe) generation capacities between 0 and 16 kW. The assessment criteria include the annual operational equivalent CO2 emission and the relative net present value (NPVrel). By the parametric analysis, the sets of the non-dominated cases within the cloud of the analysed solutions have been comprehensively investigated regarding the aims to reduce the emission and the cost. With respect to the criteria of the equivalent emission and NPVrel under the normal market scenario of the electrolyzer (5000 EUR/kW), none of the cases with the on-site H2 system can be identified as superior to those without the on-site H2 system. The non-dominated cases will mainly happen to those with a 0–9.61 NOCT kW photovoltaic (PV) panel and a 5 kW GSHP but without any solar thermal collector, which have a range of NPVrel between −4115 and 12,556 EUR along with a range of emission between 19.72 and 6.65 kg CO2,eq/m2 a. However, by reducing the electrolyzer cost to the lowest market scenario of 2000 EUR/kW, parts of the cases with the on-site H2 system start to challenge those without the on-site H2 system. Moreover, the change of the emission factor of the H2 fuel from 0.267 to 0.141 kg CO2,eq/kWhLHV will not alter the set of the overall non-dominated cases, but will uniformly reduce the annual emission of these cases by a magnitude of 3.83 kg CO2,eq/m2 a.

Suggested Citation

  • Cao, Sunliang & Alanne, Kari, 2018. "The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle," Applied Energy, Elsevier, vol. 211(C), pages 639-661.
  • Handle: RePEc:eee:appene:v:211:y:2018:i:c:p:639-661
    DOI: 10.1016/j.apenergy.2017.11.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917316781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.11.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirvonen, Janne & Kayo, Genku & Hasan, Ala & Sirén, Kai, 2016. "Zero energy level and economic potential of small-scale building-integrated PV with different heating systems in Nordic conditions," Applied Energy, Elsevier, vol. 167(C), pages 255-269.
    2. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    3. Munkhammar, Joakim & Widén, Joakim & Rydén, Jesper, 2015. "On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production," Applied Energy, Elsevier, vol. 142(C), pages 135-143.
    4. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    5. Stadler, M. & Kloess, M. & Groissböck, M. & Cardoso, G. & Sharma, R. & Bozchalui, M.C. & Marnay, C., 2013. "Electric storage in California’s commercial buildings," Applied Energy, Elsevier, vol. 104(C), pages 711-722.
    6. Hwang, Jenn Jiang, 2012. "Review on development and demonstration of hydrogen fuel cell scooters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3803-3815.
    7. Umetani, Shunji & Fukushima, Yuta & Morita, Hiroshi, 2017. "A linear programming based heuristic algorithm for charge and discharge scheduling of electric vehicles in a building energy management system," Omega, Elsevier, vol. 67(C), pages 115-122.
    8. Cao, Sunliang & Alanne, Kari, 2015. "Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle," Applied Energy, Elsevier, vol. 158(C), pages 568-583.
    9. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    10. Kneifel, Joshua & Webb, David, 2016. "Predicting energy performance of a net-zero energy building: A statistical approach," Applied Energy, Elsevier, vol. 178(C), pages 468-483.
    11. Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2014. "Matching analysis for on-site hybrid renewable energy systems of office buildings with extended indices," Applied Energy, Elsevier, vol. 113(C), pages 230-247.
    12. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    13. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    14. Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
    15. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
    16. Salom, Jaume & Marszal, Anna Joanna & Widén, Joakim & Candanedo, José & Lindberg, Karen Byskov, 2014. "Analysis of load match and grid interaction indicators in net zero energy buildings with simulated and monitored data," Applied Energy, Elsevier, vol. 136(C), pages 119-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    2. Alfredo Višković & Vladimir Franki & Angela Bašić-Šiško, 2022. "City-Level Transition to Low-Carbon Economy," Energies, MDPI, vol. 15(5), pages 1-24, February.
    3. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    4. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    5. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    6. Wei, Wu & Skye, Harrison M., 2021. "Residential net-zero energy buildings: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Wang, Huaqing & Xie, Zhuoshi & Pu, Lei & Ren, Zhongrui & Zhang, Yaoyu & Tan, Zhongfu, 2022. "Energy management strategy of hybrid energy storage based on Pareto optimality," Applied Energy, Elsevier, vol. 327(C).
    8. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage," Applied Energy, Elsevier, vol. 298(C).
    9. Liu, Jia & Chen, Xi & Yang, Hongxing & Shan, Kui, 2021. "Hybrid renewable energy applications in zero-energy buildings and communities integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 290(C).
    10. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    11. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    3. Alanne, Kari & Cao, Sunliang, 2017. "Zero-energy hydrogen economy (ZEH2E) for buildings and communities including personal mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 697-711.
    4. Cao, Sunliang, 2019. "The impact of electric vehicles and mobile boundary expansions on the realization of zero-emission office buildings," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    6. Klein, Konstantin & Langner, Robert & Kalz, Doreen & Herkel, Sebastian & Henning, Hans-Martin, 2016. "Grid support coefficients for electricity-based heating and cooling and field data analysis of present-day installations in Germany," Applied Energy, Elsevier, vol. 162(C), pages 853-867.
    7. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    8. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    9. Massimiliano Manfren & Maurizio Sibilla & Lamberto Tronchin, 2021. "Energy Modelling and Analytics in the Built Environment—A Review of Their Role for Energy Transitions in the Construction Sector," Energies, MDPI, vol. 14(3), pages 1-29, January.
    10. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    13. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    14. Wu, Xiaohua & Hu, Xiaosong & Yin, Xiaofeng & Zhang, Caiping & Qian, Shide, 2017. "Optimal battery sizing of smart home via convex programming," Energy, Elsevier, vol. 140(P1), pages 444-453.
    15. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    16. Giovani Almeida Dávi & José López de Asiain & Juan Solano & Estefanía Caamaño-Martín & César Bedoya, 2017. "Energy Refurbishment of an Office Building with Hybrid Photovoltaic System and Demand-Side Management," Energies, MDPI, vol. 10(8), pages 1-24, August.
    17. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    18. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    19. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    20. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:211:y:2018:i:c:p:639-661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.