IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222005680.html
   My bibliography  Save this article

Investigating the impact of smart energy management system on the residential electricity consumption in Austria

Author

Listed:
  • Mascherbauer, Philipp
  • Kranzl, Lukas
  • Yu, Songmin
  • Haupt, Thomas

Abstract

This paper addresses the following question: How can smart energy management system (SEMS) influence the residential electricity consumption at both individual household and national level? First, we developed an hourly optimization model for individual households. The energy cost of an individual household is minimized under given assumptions on outside temperature, radiation, (dynamic) electricity price, and feed-in tariff. By comparing the optimization to the reference scenario, we show the impact of SEMS on grid-electricity consumption and photovoltaic (PV) self-consumption at the individual household level. Second, to we aggregate the results to the national level, we constructed a detailed building stock taking Austria as an example. By aggregating the results of 2112 representative households, we investigate the impact of SEMS in the residential building stock on the national electricity system. As a result, we found that for individual single-family-houses (SFHs) with PV (no battery) and heat pump adoption, SEMS can significantly reduce the grid-electricity consumption up to 40.7% for a well-insulated building. At the national level we found that, for the buildings with 5 kWp PV but without hot water tank or battery storage, SEMS can still reduce the grid-electricity consumption by 7.4% by using the building mass asthermal storage.

Suggested Citation

  • Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005680
    DOI: 10.1016/j.energy.2022.123665
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123665?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le Dréau, J. & Heiselberg, P., 2016. "Energy flexibility of residential buildings using short term heat storage in the thermal mass," Energy, Elsevier, vol. 111(C), pages 991-1002.
    2. Klingler, Anna-Lena, 2018. "The effect of electric vehicles and heat pumps on the market potential of PV + battery systems," Energy, Elsevier, vol. 161(C), pages 1064-1073.
    3. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    4. Yildiz, Baran & Bilbao, Jose I. & Roberts, Mike & Heslop, Simon & Dore, Jonathon & Bruce, Anna & MacGill, Iain & Egan, Renate J. & Sproul, Alistair B., 2021. "Analysis of electricity consumption and thermal storage of domestic electric water heating systems to utilize excess PV generation," Energy, Elsevier, vol. 235(C).
    5. Heinen, Steve & Turner, William & Cradden, Lucy & McDermott, Frank & O'Malley, Mark, 2017. "Electrification of residential space heating considering coincidental weather events and building thermal inertia: A system-wide planning analysis," Energy, Elsevier, vol. 127(C), pages 136-154.
    6. Chen, Yongbao & Xu, Peng & Chen, Zhe & Wang, Hongxin & Sha, Huajing & Ji, Ying & Zhang, Yongming & Dou, Qiang & Wang, Sheng, 2020. "Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage," Applied Energy, Elsevier, vol. 280(C).
    7. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J., 2019. "Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency," Energy, Elsevier, vol. 186(C).
    8. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    9. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Working Papers "Sustainability and Innovation" S04/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
    2. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    3. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    5. Georg Göhler & Anna-Lena Klingler & Florian Klausmann & Dieter Spath, 2021. "Integrated Modelling of Decentralised Energy Supply in Combination with Electric Vehicle Charging in a Real-Life Case Study," Energies, MDPI, vol. 14(21), pages 1-19, October.
    6. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    7. Marszal-Pomianowska, Anna & Widén, Joakim & Le Dréau, Jérôme & Heiselberg, Per & Bak-Jensen, Birgitte & de Cerio Mendaza, Iker Diaz, 2020. "Operation of power distribution networks with new and flexible loads: A case of existing residential low voltage network," Energy, Elsevier, vol. 202(C).
    8. Wang, Qiaochu & Ding, Yan & Kong, Xiangfei & Tian, Zhe & Xu, Linrui & He, Qing, 2022. "Load pattern recognition based optimization method for energy flexibility in office buildings," Energy, Elsevier, vol. 254(PC).
    9. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Oliveira Panão, Marta J.N. & Mateus, Nuno M. & Carrilho da Graça, G., 2019. "Measured and modeled performance of internal mass as a thermal energy battery for energy flexible residential buildings," Applied Energy, Elsevier, vol. 239(C), pages 252-267.
    11. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    12. Gao, Datong & Kwan, Trevor Hocksun & Hu, Maobin & Pei, Gang, 2022. "The energy, exergy, and techno-economic analysis of a solar seasonal residual energy utilization system," Energy, Elsevier, vol. 248(C).
    13. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    14. Finck, Christian & Li, Rongling & Zeiler, Wim, 2019. "Economic model predictive control for demand flexibility of a residential building," Energy, Elsevier, vol. 176(C), pages 365-379.
    15. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    16. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    17. Wang, Chuyao & Ji, Jie & Yang, Hongxing, 2024. "Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings," Energy, Elsevier, vol. 289(C).
    18. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J. & Baier, C.R., 2020. "Optimal sizing and management strategy for PV household-prosumers with self-consumption/sufficiency enhancement and provision of frequency containment reserve," Applied Energy, Elsevier, vol. 277(C).
    19. Clift, Dean Holland & Hasan, Kazi N. & Rosengarten, Gary, 2024. "Peer-to-peer energy trading for demand response of residential smart electric storage water heaters," Applied Energy, Elsevier, vol. 353(PB).
    20. Muñoz-Rodríguez, Francisco José & Jiménez-Castillo, Gabino & de la Casa Hernández, Jesús & Aguilar Peña, Juan Domingo, 2021. "A new tool to analysing photovoltaic self-consumption systems with batteries," Renewable Energy, Elsevier, vol. 168(C), pages 1327-1343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222005680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.