IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v177y2016icp544-552.html
   My bibliography  Save this item

Development of an enhanced parametric model for wind turbine power curve

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zou, Runmin & Yang, Jiaxin & Wang, Yun & Liu, Fang & Essaaidi, Mohamed & Srinivasan, Dipti, 2021. "Wind turbine power curve modeling using an asymmetric error characteristic-based loss function and a hybrid intelligent optimizer," Applied Energy, Elsevier, vol. 304(C).
  2. Jin, Yuqing & Ju, Ping & Rehtanz, Christian & Wu, Feng & Pan, Xueping, 2018. "Equivalent modeling of wind energy conversion considering overall effect of pitch angle controllers in wind farm," Applied Energy, Elsevier, vol. 222(C), pages 485-496.
  3. Jiale Li & Xiong (Bill) Yu, 2017. "Analyses of the Extensible Blade in Improving Wind Energy Production at Sites with Low-Class Wind Resource," Energies, MDPI, vol. 10(9), pages 1-24, August.
  4. Jing, Bo & Qian, Zheng & Pei, Yan & Zhang, Lizhong & Yang, Tingyi, 2020. "Improving wind turbine efficiency through detection and calibration of yaw misalignment," Renewable Energy, Elsevier, vol. 160(C), pages 1217-1227.
  5. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
  6. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
  7. Sebastiani, Alessandro & Peña, Alfredo & Troldborg, Niels, 2023. "Numerical evaluation of multivariate power curves for wind turbines in wakes using nacelle lidars," Renewable Energy, Elsevier, vol. 202(C), pages 419-431.
  8. Qiao, Yanhui & Han, Shuang & Zhang, Yajie & Liu, Yongqian & Yan, Jie, 2024. "A multivariable wind turbine power curve modeling method considering segment control differences and short-time self-dependence," Renewable Energy, Elsevier, vol. 222(C).
  9. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
  10. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
  11. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).
  12. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
  13. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
  14. Davide Astolfi & Francesco Castellani & Ludovico Terzi, 2018. "Wind Turbine Power Curve Upgrades," Energies, MDPI, vol. 11(5), pages 1-17, May.
  15. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
  16. Rogers, T.J. & Gardner, P. & Dervilis, N. & Worden, K. & Maguire, A.E. & Papatheou, E. & Cross, E.J., 2020. "Probabilistic modelling of wind turbine power curves with application of heteroscedastic Gaussian Process regression," Renewable Energy, Elsevier, vol. 148(C), pages 1124-1136.
  17. Shahram Hanifi & Saeid Lotfian & Hossein Zare-Behtash & Andrea Cammarano, 2022. "Offshore Wind Power Forecasting—A New Hyperparameter Optimisation Algorithm for Deep Learning Models," Energies, MDPI, vol. 15(19), pages 1-21, September.
  18. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
  19. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  20. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
  21. Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
  22. Liang, Guoyuan & Su, Yahao & Wu, Xinyu & Ma, Jiajun & Long, Huan & Song, Zhe, 2023. "Abnormal data cleaning for wind turbines by image segmentation based on active shape model and class uncertainty," Renewable Energy, Elsevier, vol. 216(C).
  23. Jianzhong Zhou & Na Sun & Benjun Jia & Tian Peng, 2018. "A Novel Decomposition-Optimization Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 11(7), pages 1-27, July.
  24. Marino Marrocu & Luca Massidda, 2017. "A Simple and Effective Approach for the Prediction of Turbine Power Production From Wind Speed Forecast," Energies, MDPI, vol. 10(12), pages 1-14, November.
  25. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
  26. Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
  27. Mingzhe Zou & Sasa Z. Djokic, 2020. "A Review of Approaches for the Detection and Treatment of Outliers in Processing Wind Turbine and Wind Farm Measurements," Energies, MDPI, vol. 13(16), pages 1-30, August.
  28. Sebastiani, Alessandro & Angelou, Nikolas & Peña, Alfredo, 2024. "Wind turbine power curve modelling under wake conditions using measurements from a spinner-mounted lidar," Applied Energy, Elsevier, vol. 364(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.