IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v169y2016icp164-176.html
   My bibliography  Save this item

Experimental study on enhancement of thermal energy storage with phase-change material

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  2. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
  3. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
  4. Yang, Xiaohu & Wei, Pan & Cui, Xin & Jin, Liwen & He, Ya-Ling, 2019. "Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study," Applied Energy, Elsevier, vol. 250(C), pages 1457-1467.
  5. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.
  6. Lashgari, Somayeh & Arabi, Hassan & Mahdavian, Ali Reza & Ambrogi, Veronica, 2017. "Thermal and morphological studies on novel PCM microcapsules containing n-hexadecane as the core in a flexible shell," Applied Energy, Elsevier, vol. 190(C), pages 612-622.
  7. Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
  8. Lu, Shilei & Zhai, Xue & Gao, Jingxian & Wang, Ran, 2022. "Performance optimization and experimental analysis of a novel low-temperature latent heat thermal energy storage device," Energy, Elsevier, vol. 239(PE).
  9. Choi, Sung Ho & Sohn, Dong Kee & Ko, Han Seo, 2021. "Performance enhancement of latent heat thermal energy storage by bubble-driven flow," Applied Energy, Elsevier, vol. 302(C).
  10. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  11. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
  12. Cui, Hongzhi & Tang, Waiching & Qin, Qinghua & Xing, Feng & Liao, Wenyu & Wen, Haibo, 2017. "Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball," Applied Energy, Elsevier, vol. 185(P1), pages 107-118.
  13. Bhagat, Kunal & Saha, Sandip K., 2016. "Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant," Renewable Energy, Elsevier, vol. 95(C), pages 323-336.
  14. Wang, Zhifeng & Wu, Jiani & Lei, Dongqiang & Liu, Hong & Li, Jinping & Wu, Zhiyong, 2020. "Experimental study on latent thermal energy storage system with gradient porosity copper foam for mid-temperature solar energy application," Applied Energy, Elsevier, vol. 261(C).
  15. Jannesari, Hamid & Abdollahi, Naeim, 2017. "Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems," Applied Energy, Elsevier, vol. 189(C), pages 369-384.
  16. Ebrahimi, A. & Hosseini, M.J. & Ranjbar, A.A. & Rahimi, M. & Bahrampoury, R., 2019. "Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe," Renewable Energy, Elsevier, vol. 138(C), pages 378-394.
  17. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  18. Huanpei Zheng & Changhong Wang, 2017. "Numerical and Experimental Studies on the Heat Transfer Performance of Copper Foam Filled with Paraffin," Energies, MDPI, vol. 10(7), pages 1-13, July.
  19. Gupta, Rajan & Shinde, Shraddha & Yella, Aswani & Subramaniam, C. & Saha, Sandip K., 2020. "Thermomechanical characterisations of PTFE, PEEK, PEKK as encapsulation materials for medium temperature solar applications," Energy, Elsevier, vol. 194(C).
  20. Xue Chen & Xiaolei Li & Xinlin Xia & Chuang Sun & Rongqiang Liu, 2019. "Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement," Energies, MDPI, vol. 12(17), pages 1-18, August.
  21. Zhang, Shengqi & Pu, Liang & Mancin, Simone & Dai, Minghao & Xu, Lingling, 2022. "Role of partial and gradient filling strategies of copper foam on latent thermal energy storage: An experimental study," Energy, Elsevier, vol. 255(C).
  22. Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
  23. Zheng, Zhang-Jing & Yang, Chao & Xu, Yang & Cai, Xiao, 2021. "Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity," Renewable Energy, Elsevier, vol. 172(C), pages 802-815.
  24. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
  25. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
  26. Jiangxu Huang & Kun He & Lei Wang, 2021. "Pore-Scale Investigation on Natural Convection Melting in a Square Cavity with Gradient Porous Media," Energies, MDPI, vol. 14(14), pages 1-19, July.
  27. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
  28. Izquierdo-Barrientos, M.A. & Sobrino, C. & Almendros-Ibáñez, J.A. & Barreneche, C. & Ellis, N. & Cabeza, L.F., 2016. "Characterization of granular phase change materials for thermal energy storage applications in fluidized beds," Applied Energy, Elsevier, vol. 181(C), pages 310-321.
  29. Zhang, Long & Zhou, Kechao & Wei, Quiping & Ma, Li & Ye, Wentao & Li, Haichao & Zhou, Bo & Yu, Zhiming & Lin, Cheng-Te & Luo, Jingting & Gan, Xueping, 2019. "Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage," Applied Energy, Elsevier, vol. 233, pages 208-219.
  30. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).
  31. Wang, Tingyu & Wang, Shuangfeng & Geng, Lixia & Fang, Yutang, 2016. "Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network," Applied Energy, Elsevier, vol. 179(C), pages 601-608.
  32. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
  33. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
  34. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  35. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
  36. Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
  37. Ye, Hong & Wang, Zijun & Wang, Liwei, 2017. "Effects of PCM on power consumption and temperature control performance of a thermal control system subject to periodic ambient conditions," Applied Energy, Elsevier, vol. 190(C), pages 213-221.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.