IDEAS home Printed from https://ideas.repec.org/r/ect/emjrnl/v12y2009is1ps50-s67.html
   My bibliography  Save this item

Copula-based nonlinear quantile autoregression

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
  2. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242R, Cowles Foundation for Research in Economics, Yale University, revised Oct 2020.
  3. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
  4. Baur, Dirk G., 2013. "The structure and degree of dependence: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
  5. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
  6. Sim, Nicholas, 2016. "Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 31-45.
  7. Julio Galvez & Javier Mencía, 2014. "Distributional Linkages between European Sovereign Bond and Bank Asset Returns," Working Papers wp2014_1407, CEMFI.
  8. Li, Haiqi & Zheng, Chaowen & Guo, Yu, 2016. "Estimation and test for quantile nonlinear cointegrating regression," Economics Letters, Elsevier, vol. 148(C), pages 27-32.
  9. Jin, Xisong & Nadal De Simone, Francisco de A., 2014. "Banking systemic vulnerabilities: A tail-risk dynamic CIMDO approach," Journal of Financial Stability, Elsevier, vol. 14(C), pages 81-101.
  10. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
  11. Qing Xu & Terry Childs, 2013. "Evaluating forecast performances of the quantile autoregression models in the present global crisis in international equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 23(2), pages 105-117, January.
  12. Jean-Paul Chavas, 2021. "The dynamics and volatility of prices in multiple markets: a quantile approach," Empirical Economics, Springer, vol. 60(4), pages 1607-1628, April.
  13. Alex Maynard & Katsumi Shimotsu & Nina Kuriyama, 2023. "Inference in Predictive Quantile Regressions," Papers 2306.00296, arXiv.org, revised May 2024.
  14. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
  15. Nguyen-Huy, Thong & Deo, Ravinesh C. & An-Vo, Duc-Anh & Mushtaq, Shahbaz & Khan, Shahjahan, 2017. "Copula-statistical precipitation forecasting model in Australia’s agro-ecological zones," Agricultural Water Management, Elsevier, vol. 191(C), pages 153-172.
  16. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  17. Xiaohong Chen & Wei Biao Wu Wu & Yanping Yi, 2009. "Efficient estimation of copula-based semiparametric Markov models," CeMMAP working papers CWP06/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  18. Oliver Linton & Dajing Shang & Yang Yan, 2012. "Efficient estimation of conditional risk measures in a semiparametric GARCH model," CeMMAP working papers CWP25/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  19. Fan, Yanqin & Henry, Marc, 2023. "Vector copulas," Journal of Econometrics, Elsevier, vol. 234(1), pages 128-150.
  20. Krenar Avdulaj & Ladislav Kristoufek, 2020. "On Tail Dependence and Multifractality," Mathematics, MDPI, vol. 8(10), pages 1-13, October.
  21. Geraci, Marco, 2019. "Modelling and estimation of nonlinear quantile regression with clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 30-46.
  22. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
  23. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
  24. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.
  25. Hongtao Guo & Miranda S. Lam & Guojun Wu & Zhijie Xiao, 2013. "Risk Analysis Using Regression Quantiles: Evidence from International Equity Markets," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 7(2), pages 1-15.
  26. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
  27. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
  28. Harry Joe, 2018. "Dependence Properties of Conditional Distributions of some Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 975-1001, September.
  29. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.