IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i3d10.1007_s11009-017-9544-9.html
   My bibliography  Save this article

Dependence Properties of Conditional Distributions of some Copula Models

Author

Listed:
  • Harry Joe

    (University of British Columbia)

Abstract

For multivariate data from an observational study, inferences of interest can include conditional probabilities or quantiles for one variable given other variables. For statistical modeling, one could fit a parametric multivariate model, such as a vine copula, to the data and then use the model-based conditional distributions for further inference. Some results are derived for properties of conditional distributions under different positive dependence assumptions for some copula-based models. The multivariate version of the stochastically increasing ordering of conditional distributions is introduced for this purpose. Results are explained in the context of multivariate Gaussian distributions, as properties for Gaussian distributions can help to understand the properties of copula extensions based on vines.

Suggested Citation

  • Harry Joe, 2018. "Dependence Properties of Conditional Distributions of some Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 975-1001, September.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-017-9544-9
    DOI: 10.1007/s11009-017-9544-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9544-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9544-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    2. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    3. Takemi Yanagimoto & Masashi Okamoto, 1969. "Partial orderings of permutations and monotonicity of a rank correlation statistic," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 21(1), pages 489-506, December.
    4. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
    5. Marco Scarsini & Alfred Muller, 2001. "Stochastic comparison of random vectors with a common copula," Post-Print hal-00540198, HAL.
    6. Z. Fang & H. Joe, 1992. "Further developments on some dependence orderings for continuous bivariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 44(3), pages 501-517, September.
    7. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    8. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities II. Multivariate reverse rule distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 499-516, December.
    9. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    10. Karlin, Samuel & Rinott, Yosef, 1980. "Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions," Journal of Multivariate Analysis, Elsevier, vol. 10(4), pages 467-498, December.
    11. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    12. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castaño-Martínez, A. & Pigueiras, G. & Sordo, M.A., 2019. "On a family of risk measures based on largest claims," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 92-97.
    2. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    3. Ansari Jonathan & Rüschendorf Ludger, 2021. "Sklar’s theorem, copula products, and ordering results in factor models," Dependence Modeling, De Gruyter, vol. 9(1), pages 267-306, January.
    4. Antonia Castaño-Martínez & Gema Pigueiras & Georgios Psarrakos & Miguel A. Sordo, 2020. "Increasing concave orderings of linear combinations of order statistics with applications to social welfare," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 699-712, August.
    5. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    6. Mulero, Julio & Pellerey, Franco & Rodríguez-Griñolo, Rosario, 2010. "Stochastic comparisons for time transformed exponential models," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 328-333, April.
    7. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    8. Colangelo, Antonio & Scarsini, Marco & Shaked, Moshe, 2005. "Some notions of multivariate positive dependence," Insurance: Mathematics and Economics, Elsevier, vol. 37(1), pages 13-26, August.
    9. Rüschendorf Ludger & Witting Julian, 2017. "VaR bounds in models with partial dependence information on subgroups," Dependence Modeling, De Gruyter, vol. 5(1), pages 59-74, January.
    10. Sordo, Miguel A. & Suárez-Llorens, Alfonso & Bello, Alfonso J., 2015. "Comparison of conditional distributions in portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 62-69.
    11. Nowak, Piotr Bolesław, 2016. "The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 49-54.
    12. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    13. Chi, Chang Koo & Murto, Pauli & Valimaki, Juuso, 2017. "All-Pay Auctions with Affiliated Values," MPRA Paper 80799, University Library of Munich, Germany.
    14. López-Díaz, María Concepción & López-Díaz, Miguel, 2013. "A note on the family of extremality stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 230-236.
    15. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    16. Donald C., Rudow, 2005. "Preferences and Increased Risk Aversion under a General Framework of Stochastic Dominance," MPRA Paper 41191, University Library of Munich, Germany, revised 07 Jun 2005.
    17. Marcello Basili & Paulo Casaca & Alain Chateauneuf & Maurizio Franzini, 2017. "Multidimensional Pigou–Dalton transfers and social evaluation functions," Theory and Decision, Springer, vol. 83(4), pages 573-590, December.
    18. Vikram Krishnamurthy & Udit Pareek, 2015. "Myopic Bounds for Optimal Policy of POMDPs: An Extension of Lovejoy’s Structural Results," Operations Research, INFORMS, vol. 63(2), pages 428-434, April.
    19. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    20. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:3:d:10.1007_s11009-017-9544-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.