IDEAS home Printed from https://ideas.repec.org/r/eco/journ2/2018-03-28.html
   My bibliography  Save this item

Forecasting Natural Gas: A Literature Survey

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
  2. Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
  3. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
  4. Ahmat Khazali Acyl & Flavian Emmanuel Sapnken & Aubin Kinfack Jeutsa & Jean Marie Stevy Sama & Marcel Rodrigue Ewodo-Amougou & Jean Gaston Tamba, 2024. "Forecasting Petroleum Products Consumption in the Chadian Road Transport Sector using Optimised Grey Models," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 603-611, January.
  5. Oana Vlăduţ & George Eduard Grigore & Dumitru Alexandru Bodislav & Gabriel Ilie Staicu & Raluca Iuliana Georgescu, 2024. "Analysing the Connection between Economic Growth, Conventional Energy, and Renewable Energy: A Comparative Analysis of the Caspian Countries," Energies, MDPI, vol. 17(1), pages 1-30, January.
  6. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
  7. Athanasios Anagnostis & Elpiniki Papageorgiou & Dionysis Bochtis, 2020. "Application of Artificial Neural Networks for Natural Gas Consumption Forecasting," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
  8. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
  9. Ivan Borisov Todorov & Fernando Sánchez Lasheras, 2022. "Forecasting Applied to the Electricity, Energy, Gas and Oil Industries: A Systematic Review," Mathematics, MDPI, vol. 10(21), pages 1-15, October.
  10. Jonathan Berrisch & Florian Ziel, 2022. "Distributional modeling and forecasting of natural gas prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1065-1086, September.
  11. Yuvaraj Natarajan & Sri Preethaa K. R. & Gitanjali Wadhwa & Young Choi & Zengshun Chen & Dong-Eun Lee & Yirong Mi, 2024. "Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
  12. Dimitri Lalas & Nikolaos Gakis & Sebastian Mirasgedis & Elena Georgopoulou & Yannis Sarafidis & Haris Doukas, 2021. "Energy and GHG Emissions Aspects of the COVID Impact in Greece," Energies, MDPI, vol. 14(7), pages 1-22, April.
  13. Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
  14. Herry Kartika Gandhi & Ispány Márton, 2024. "Multi-step Natural Gas Price Forecasting using Ensemble Empirical Mode Decomposition and Long Short-Term Memory Hybrid Model," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 590-598, July.
  15. Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
  16. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
  17. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
  18. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
  19. Mohamed Jaouad Malzi & Aziz Ettahir & Sa d Hanchane, 2019. "Responsiveness of Residential Natural Gas Demand to Elderly, Urban Population and Density: Evidence from Organization for Economic Co-operation and Development Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 388-395.
  20. Nan Wei & Changjun Li & Jiehao Duan & Jinyuan Liu & Fanhua Zeng, 2019. "Daily Natural Gas Load Forecasting Based on a Hybrid Deep Learning Model," Energies, MDPI, vol. 12(2), pages 1-15, January.
  21. Aarti Mehta Sharma & Saina Baby & Varsha Raghu, 2024. "Forecasting High Speed Diesel Demand in India with Econometric and Machine Learning Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 496-506, January.
  22. Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
  23. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
  24. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
  25. Diana M Nova Díaz & Aritz Adin & Eduardo Sánchez Iriso, 2024. "QALYs in adults with cerebral palsy: Mapping from the San Martin Scale onto the EQ-5D-5L instrument," Working Papers 2024-07, FEDEA.
  26. Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
  27. Svoboda, Radek & Kotik, Vojtech & Platos, Jan, 2021. "Short-term natural gas consumption forecasting from long-term data collection," Energy, Elsevier, vol. 218(C).
  28. Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
  29. Sapnken, Flavian Emmanuel & Posso, Fausto & Kibong, Marius Tony & Noumo, Prosper Gopdjim & Fantah, Armel Cheunteu & Tamba, Jean Gaston, 2024. "Green hydrogen demand in Cameroon's energy sectors by 2040," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.