IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1925-d1346484.html
   My bibliography  Save this article

Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction

Author

Listed:
  • Yuvaraj Natarajan

    (Department of Robot and Smart System Engineering, Kyungpook National University, 80, Daehak-ro, Uk-gu, Daegu 41566, Republic of Korea
    Center for Research and Development, KPR Institute of Engineering and Technology, Coimbatore 641407, India)

  • Sri Preethaa K. R.

    (Department of Robot and Smart System Engineering, Kyungpook National University, 80, Daehak-ro, Uk-gu, Daegu 41566, Republic of Korea)

  • Gitanjali Wadhwa

    (Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), ZIH Technische Universität Dresden (TUD), Budapester Straße 34b, 01062 Dresden, Germany)

  • Young Choi

    (Earth Turbine, 36, Dongdeok-ro 40-gil, Jung-gu, Daegu 41905, Republic of Korea)

  • Zengshun Chen

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China)

  • Dong-Eun Lee

    (School of Architecture, Civil, Environment and Energy Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)

  • Yirong Mi

    (School of Architecture, Civil, Environment and Energy Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea)

Abstract

Buildings remain pivotal in global energy consumption, necessitating a focused approach toward enhancing their energy efficiency to alleviate environmental impacts. Precise energy prediction stands as a linchpin in optimizing efficiency, offering indispensable foresight into future energy demands critical for sustainable environments. However, accurately forecasting energy consumption for individual households and commercial buildings presents multifaceted challenges due to their diverse consumption patterns. Leveraging the emerging landscape of the Internet of Things (IoT) in smart homes, coupled with AI-driven energy solutions, presents promising avenues for overcoming these challenges. This study introduces a pioneering approach that harnesses a hybrid deep learning model for energy consumption prediction, strategically amalgamating convolutional neural networks’ features with long short-term memory (LSTM) units. The model harnesses the granularity of IoT-enabled smart meter data, enabling precise energy consumption forecasts in both residential and commercial spaces. In a comparative analysis against established deep learning models, the proposed hybrid model consistently demonstrates superior performance, notably exceling in accurately predicting weekly average energy usage. The study’s innovation lies in its novel model architecture, showcasing an unprecedented capability to forecast energy consumption patterns. This capability holds significant promise in guiding tailored energy management strategies, thereby fostering optimized energy consumption practices in buildings. The demonstrated superiority of the hybrid model underscores its potential to serve as a cornerstone in driving sustainable energy utilization, offering invaluable guidance for a more energy-efficient future.

Suggested Citation

  • Yuvaraj Natarajan & Sri Preethaa K. R. & Gitanjali Wadhwa & Young Choi & Zengshun Chen & Dong-Eun Lee & Yirong Mi, 2024. "Enhancing Building Energy Efficiency with IoT-Driven Hybrid Deep Learning Models for Accurate Energy Consumption Prediction," Sustainability, MDPI, vol. 16(5), pages 1-23, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1925-:d:1346484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yunxin & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2023. "A novel grey Lotka–Volterra model driven by the mechanism of competition and cooperation for energy consumption forecasting," Energy, Elsevier, vol. 264(C).
    2. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    3. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    4. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    5. Ye, Li & Dang, Yaoguo & Fang, Liping & Wang, Junjie, 2023. "A nonlinear interactive grey multivariable model based on dynamic compensation for forecasting the economy-energy-environment system," Applied Energy, Elsevier, vol. 331(C).
    6. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    7. Kim, H.J. & Kim, M.K., 2023. "A novel deep learning-based forecasting model optimized by heuristic algorithm for energy management of microgrid," Applied Energy, Elsevier, vol. 332(C).
    8. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    2. Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
    3. Max Olinto Moreira & Betania Mafra Kaizer & Takaaki Ohishi & Benedito Donizeti Bonatto & Antonio Carlos Zambroni de Souza & Pedro Paulo Balestrassi, 2022. "Multivariate Strategy Using Artificial Neural Networks for Seasonal Photovoltaic Generation Forecasting," Energies, MDPI, vol. 16(1), pages 1-30, December.
    4. Yijue Sun & Fenglin Zhang, 2022. "Grey Multivariable Prediction Model of Energy Consumption with Different Fractional Orders," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    5. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    6. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    7. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    8. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    9. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    10. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    11. Li, Hui & Nie, Weige & Duan, Huiming, 2024. "A Haavelmo grey model based on economic growth and its application to energy industry investments," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    12. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    13. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    14. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    15. Osaru Agbonaye & Patrick Keatley & Ye Huang & Motasem Bani Mustafa & Neil Hewitt, 2020. "Design, Valuation and Comparison of Demand Response Strategies for Congestion Management," Energies, MDPI, vol. 13(22), pages 1-29, November.
    16. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    17. Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
    18. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    19. Siting Li & Huafeng Cai, 2024. "Short-Term Power Load Forecasting Using a VMD-Crossformer Model," Energies, MDPI, vol. 17(11), pages 1-18, June.
    20. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1925-:d:1346484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.