IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2024-01-54.html
   My bibliography  Save this article

Forecasting High Speed Diesel Demand in India with Econometric and Machine Learning Methods

Author

Listed:
  • Aarti Mehta Sharma

    (Symbiosis Centre for Management Studies, Bengaluru, Symbiosis International (Deemed University), Pune, Maharashtra, India)

  • Saina Baby

    (Symbiosis Institute of Business Management Bengaluru, Symbiosis International (Deemed University), Pune, Maharashtra, India,)

  • Varsha Raghu

    (Freelance Researcher, India.)

Abstract

According to International Energy Agency (IEA), India is expected to surpass China by 2024 to become the second largest consumer of oil in the world followed by the United States. High-Speed Diesel (HSD) has the biggest share in the total petroleum products consumed in India accounting for around 38% of the total consumption. Considering the volatile global oil market and an oil import dependency ratio of more than 80% during the last four years, the probability of supply disruptions is high in the Indian context. As any uncertainty about the supply of diesel can affect the smooth functioning of the economy and may create inflationary pressures. Accurate forecasting of HSD demand will be essential for appropriate supply management arrangements. Artificial Neural Networks (ANN) with Multi-Layer Perceptron (MLP) and extreme learning machines is used for forecasting diesel demand in this study. Demand forecasting has been carried out using monthly HSD demand data drawn from the “Indiastat†database for the period 1991-2022. Comparison of ANN with traditional forecasting methods of Autoregressive Integrated Moving Average(ARIMA)and Exponential Smoothing has also been undertaken in this study. This study identifies the deep learning technique of ANN with MLP as the best diesel demand forecasting technique.

Suggested Citation

  • Aarti Mehta Sharma & Saina Baby & Varsha Raghu, 2024. "Forecasting High Speed Diesel Demand in India with Econometric and Machine Learning Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 496-506, January.
  • Handle: RePEc:eco:journ2:2024-01-54
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/15572/7699
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/15572
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasanov, Mübariz, 2015. "The demand for transport fuels in Turkey," Energy Economics, Elsevier, vol. 51(C), pages 125-134.
    2. Geem, Zong Woo, 2011. "Transport energy demand modeling of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 39(8), pages 4644-4650, August.
    3. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    4. Marbuah, George, 2014. "Understanding crude oil import demand behaviour in Ghana," MPRA Paper 60436, University Library of Munich, Germany.
    5. Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
    6. Huang, Menghao & Shao, Wei & Wang, Jian, 2023. "Correlations between the crude oil market and capital markets under the Russia–Ukraine conflict: A perspective of crude oil importing and exporting countries," Resources Policy, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
    2. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    3. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    4. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    5. Eric Fosu Oteng-Abayie & Prosper Awuni Ayinbilla & Maame Esi Eshun, 2018. "Macroeconomic Determinants of Crude Oil Demand in Ghana," Global Business Review, International Management Institute, vol. 19(4), pages 873-888, August.
    6. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    7. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    8. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    9. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    10. Yan-Hong Yang & Ying-Lin Liu & Ying-Hui Shao, 2023. "Visibility graph analysis of crude oil futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," Papers 2310.18903, arXiv.org, revised Jun 2024.
    11. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    12. Darko B. Vuković & Senanu Dekpo-Adza & Vladislav Khmelnitskiy & Mustafa Özer, 2023. "Spillovers across the Asian OPEC+ Financial Market," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    13. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    14. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.
    15. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    16. Satrio Mukti Wibowo & Dedi Budiman Hakim & Baba Barus & Akhmad Fauzi, 2022. "Estimation of Energy Demand in Indonesia using Artificial Neural Network," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 261-271, November.
    17. Xinyu Han & Rongrong Li, 2019. "Comparison of Forecasting Energy Consumption in East Africa Using the MGM, NMGM, MGM-ARIMA, and NMGM-ARIMA Model," Energies, MDPI, vol. 12(17), pages 1-24, August.
    18. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    19. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    20. Rajesh Sharma & Pradeep Kautish & D. Suresh Kumar, 2021. "Assessing Dynamism of Crude Oil Demand in Middle-Income Countries of South Asia: A Panel Data Investigation," Global Business Review, International Management Institute, vol. 22(1), pages 169-183, February.

    More about this item

    Keywords

    High Speed Diesel; Forecasting; Time Series; ANN; Accuracy; ARIMA; Exponential Smoothing;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2024-01-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.