IDEAS home Printed from https://ideas.repec.org/r/cpr/ceprdp/6707.html
   My bibliography  Save this item

Factor-augmented Error Correction Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "Modelling non-stationary ‘Big Data’," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
  2. Claudio Morana, 2010. "Heteroskedastic Factor Vector Autoregressive Estimation of Persistent and Non Persistent Processes Subject to Structural Breaks," ICER Working Papers - Applied Mathematics Series 36-2010, ICER - International Centre for Economic Research.
  3. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
  4. John W. Galbraith & Victoria Zinde-Walsh, 2011. "Partially Dimension-Reduced Regressions with Potentially Infinite-Dimensional Processes," CIRANO Working Papers 2011s-57, CIRANO.
  5. László Békési & Lorant Kaszab & Szabolcs Szentmihályi, 2017. "The EAGLE model for Hungary - a global perspective," MNB Working Papers 2017/7, Magyar Nemzeti Bank (Central Bank of Hungary).
  6. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
  7. Carlomagno, Guillermo, 2014. "The pairwise approach to model a large set of disaggregates with common trends," DES - Working Papers. Statistics and Econometrics. WS ws141309, Universidad Carlos III de Madrid. Departamento de Estadística.
  8. Galbraith, John W. & Zinde-Walsh, Victoria, 2020. "Simple and reliable estimators of coefficients of interest in a model with high-dimensional confounding effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 609-632.
  9. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
  10. von Borstel, Julia & Eickmeier, Sandra & Krippner, Leo, 2016. "The interest rate pass-through in the euro area during the sovereign debt crisis," Journal of International Money and Finance, Elsevier, vol. 68(C), pages 386-402.
  11. Chris Bloor & Troy Matheson, 2010. "Analysing shock transmission in a data-rich environment: a large BVAR for New Zealand," Empirical Economics, Springer, vol. 39(2), pages 537-558, October.
  12. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
  13. Francisco Corona & Graciela González-Farías & Pedro Orraca, 2017. "A dynamic factor model for the Mexican economy: are common trends useful when predicting economic activity?," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 26(1), pages 1-35, December.
  14. Lombardi, Marco J. & Godbout, Claudia, 2012. "Short-term forecasting of the Japanese economy using factor models," Working Paper Series 1428, European Central Bank.
  15. Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023. "LASSO principal component averaging: A fully automated approach for point forecast pooling," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
  16. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
  17. Manisha Pradhananga, 2016. "Financialization and the rise in co-movement of commodity prices," International Review of Applied Economics, Taylor & Francis Journals, vol. 30(5), pages 547-566, September.
  18. Mahamadou Roufahi Tankari & Anatole Goundan, 2018. "Nontraded food commodity spatial price transmission: evidence from the Niger millet market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(2), pages 147-156, March.
  19. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
  20. repec:cte:wsrepe:23974 is not listed on IDEAS
  21. Buss, Ginters, 2010. "A note on GDP now-/forecasting with dynamic versus static factor models along a business cycle," MPRA Paper 22147, University Library of Munich, Germany.
  22. Banerjee, Anindya & Marcellino, Massimiliano & Masten, Igor, 2014. "Forecasting with factor-augmented error correction models," International Journal of Forecasting, Elsevier, vol. 30(3), pages 589-612.
  23. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  24. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
  25. Smith, Ron P. & Zoega, Gylfi, 2008. "Global Factors, Unemployment Adjustment and the Natural Rate," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-29.
  26. repec:zbw:bofitp:2012_025 is not listed on IDEAS
  27. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
  28. Francisco Corona & Pilar Poncela & Esther Ruiz, 2020. "Estimating Non-stationary Common Factors: Implications for Risk Sharing," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 37-60, January.
  29. Dibyendu Maiti & Naveen Kumar & Debajit Jha & Soumyadipta Sarkar, 2024. "Post-COVID Recovery and Long-Run Forecasting of Indian GDP with Factor-Augmented Error Correction Model (FECM)," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1095-1120, March.
  30. Giovanni Melina & Stefania Villa, 2014. "Fiscal Policy And Lending Relationships," Economic Inquiry, Western Economic Association International, vol. 52(2), pages 696-712, April.
  31. In Choi & Hanbat Jeong, 2020. "Differencing versus nondifferencing in factor‐based forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 728-750, September.
  32. Kurz-Kim, Jeong-Ryeol, 2018. "A note on the predictive power of survey data in nowcasting euro area GDP," Discussion Papers 10/2018, Deutsche Bundesbank.
  33. Scheffel, Eric Michael, 2012. "Political uncertainty in a data-rich environment," MPRA Paper 37318, University Library of Munich, Germany.
  34. Gao, Zhaoxing & Tsay, Ruey S., 2021. "Modeling high-dimensional unit-root time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1535-1555.
  35. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
  36. Marco Lombardi & Chiara Osbat & Bernd Schnatz, 2012. "Global commodity cycles and linkages: a FAVAR approach," Empirical Economics, Springer, vol. 43(2), pages 651-670, October.
  37. Moosa, Imad A. & Vaz, John J., 2016. "Cointegration, error correction and exchange rate forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 21-34.
  38. Bušs, Ginters, 2009. "Comparing forecasts of Latvia's GDP using simple seasonal ARIMA models and direct versus indirect approach," MPRA Paper 16684, University Library of Munich, Germany.
  39. Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic forecast accuracy in a data‐rich environment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
  40. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
  41. Bardhyl Dauti, 2024. "Macroeconomic, institutional and financial determinants of current account deficit in North Macedonia: Evidence from time series," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 42(1), pages 65-94.
  42. Tibor Szendrei & Katalin Varga, 2020. "FISS - A Factor-based Index of Systemic Stress in the Financial System," Russian Journal of Money and Finance, Bank of Russia, vol. 79(1), pages 3-34, March.
  43. Carlomagno, Guillermo, 2016. "Discovering common trends in a large set of disaggregates: statistical procedures and their properties," DES - Working Papers. Statistics and Econometrics. WS ws1519, Universidad Carlos III de Madrid. Departamento de Estadística.
  44. repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
  45. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
  46. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
  47. Hyun Hak Kim & Norman Swanson, 2013. "Mining Big Data Using Parsimonious Factor and Shrinkage Methods," Departmental Working Papers 201316, Rutgers University, Department of Economics.
  48. Weigand Roland & Wanger Susanne & Zapf Ines, 2018. "Factor Structural Time Series Models for Official Statistics with an Application to Hours Worked in Germany," Journal of Official Statistics, Sciendo, vol. 34(1), pages 265-301, March.
  49. Francisco Corona & Pedro Orraca, 2019. "Remittances in Mexico and their unobserved components," The Journal of International Trade & Economic Development, Taylor & Francis Journals, vol. 28(8), pages 1047-1066, November.
  50. Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
  51. Pallara, Kevin, 2016. "The dynamic effects of government spending: a FAVAR approach," MPRA Paper 92283, University Library of Munich, Germany.
  52. Qin, Duo & He, Xinhua, 2012. "Modelling the impact of aggregate financial shocks external to the Chinese economy," BOFIT Discussion Papers 25/2012, Bank of Finland, Institute for Economies in Transition.
  53. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
  54. Duangnate, Kannika & Mjelde, James W., 2017. "Comparison of data-rich and small-scale data time series models generating probabilistic forecasts: An application to U.S. natural gas gross withdrawals," Energy Economics, Elsevier, vol. 65(C), pages 411-423.
  55. Dedu, Vasile & Stoica, Tiberiu, 2014. "The Impact of Monetaru Policy on the Romanian Economy," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 71-86, June.
  56. Christophe Bellégo & Laurent Ferrara, 2010. "A factor-augmented probit model for business cycle analysis," Working Papers hal-04140915, HAL.
  57. Masud Alam, 2024. "Output, employment, and price effects of U.S. narrative tax changes: a factor-augmented vector autoregression approach," Empirical Economics, Springer, vol. 67(4), pages 1421-1471, October.
  58. Daoui Marouane, 2023. "Macroeconomic Forecasting using Dynamic Factor Models: The Case of Morocco," Papers 2302.14180, arXiv.org, revised May 2023.
  59. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2020. "Cointegration and Error Correction Mechanisms for Singular Stochastic Vectors," Econometrics, MDPI, vol. 8(1), pages 1-23, February.
  60. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
  61. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
  62. Tobias Hartl, 2020. "Macroeconomic Forecasting with Fractional Factor Models," Papers 2005.04897, arXiv.org.
  63. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
  64. repec:ecb:ecbwps:20111428 is not listed on IDEAS
  65. Stoupos, Nikolaos & Nikas, Christos & Kiohos, Apostolos, 2023. "Turkey: From a thriving economic past towards a rugged future? - An empirical analysis on the Turkish financial markets," Emerging Markets Review, Elsevier, vol. 54(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.