My bibliography
Save this item
Forecasting in Economics and Finance
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020.
"Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice,"
CEPR Discussion Papers
15418, C.E.P.R. Discussion Papers.
- Andrii Babii & Xi Chen & Eric Ghysels & Rohit Kumar, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," Papers 2010.08463, arXiv.org, revised Nov 2021.
- Carstensen, Kai & Bachmann, Rüdiger & Schneider, Martin & Lautenbacher, Stefan, 2018. "Uncertainty is Change," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181572, Verein für Socialpolitik / German Economic Association.
- Anwen Yin, 2022. "Does the kitchen‐sink model work forecasting the equity premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 223-247, March.
- David I. Harvey & Stephen J. Leybourne & Yang Zu, 2024. "Tests for equal forecast accuracy under heteroskedasticity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 850-869, August.
- Gibson, Heather D. & Hall, Stephen G. & Tavlas, George S., 2020. "Nonlinear forecast combinations: An example using euro-area real GDP growth," Journal of Economic Behavior & Organization, Elsevier, vol. 180(C), pages 579-589.
- Timo Dimitriadis & Andrew J. Patton & Patrick W. Schmidt, 2019.
"Testing Forecast Rationality for Measures of Central Tendency,"
Papers
1910.12545, arXiv.org, revised Jul 2024.
- Dimitriadis, Timo & Patton, Andrew J. & Schmidt, Patrick W., 2020. "Testing forecast rationality for measures of central tendency," Hohenheim Discussion Papers in Business, Economics and Social Sciences 12-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Qiu, Yue & Zheng, Yuchen, 2023. "Improving box office projections through sentiment analysis: Insights from regularization-based forecast combinations," Economic Modelling, Elsevier, vol. 125(C).
- Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021.
"Forecasting stock returns with large dimensional factor models,"
Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
- Alessandro Giovannelli & Daniele Massacci & Stefano Soccorsi, 2020. "Forecasting Stock Returns with Large Dimensional Factor Models," Working Papers 305661169, Lancaster University Management School, Economics Department.
- Boriss Siliverstovs & Daniel S. Wochner, 2021. "State‐dependent evaluation of predictive ability," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 547-574, April.
- Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
- Hambuckers, J. & Ulm, M., 2023. "On the role of interest rate differentials in the dynamic asymmetry of exchange rates," Economic Modelling, Elsevier, vol. 129(C).
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- David A. Mascio & Frank J. Fabozzi & J. Kenton Zumwalt, 2021. "Market timing using combined forecasts and machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 1-16, January.
- Newell, Richard G. & Prest, Brian C. & Sexton, Steven E., 2021.
"The GDP-Temperature relationship: Implications for climate change damages,"
Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
- Newell, Richard G. & Prest, Brian C. & Sexton, Steven, 2020. "The GDP Temperature Relationship: Implications for Climate Change Damages," RFF Working Paper Series 18-17, Resources for the Future.
- Elliot Beck & Damian Kozbur & Michael Wolf, 2023. "Hedging Forecast Combinations With an Application to the Random Forest," Papers 2308.15384, arXiv.org, revised Aug 2023.
- Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Joseph Agyapong, 2021. "Application of Taylor Rule Fundamentals in Forecasting Exchange Rates," Economies, MDPI, vol. 9(2), pages 1-27, June.
- Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
- Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
- Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024.
"Expecting the unexpected: Stressed scenarios for economic growth,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
- Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
- Hounyo, Ulrich & Lahiri, Kajal, 2023.
"Estimating the variance of a combined forecast: Bootstrap-based approach,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
- Ulrich Hounyo & Kajal Lahiri, 2021. "Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach," CREATES Research Papers 2021-14, Department of Economics and Business Economics, Aarhus University.
- Alessandro Casini, 2018. "Tests for Forecast Instability and Forecast Failure under a Continuous Record Asymptotic Framework," Papers 1803.10883, arXiv.org, revised Dec 2018.
- Rahul Deb & Mallesh M. Pai & Maher Said, 2018.
"Evaluating Strategic Forecasters,"
American Economic Review, American Economic Association, vol. 108(10), pages 3057-3103, October.
- Rahul Deb & Mallesh Pai & Maher Said, 2017. "Evaluating Strategic Forecasters," Working Papers tecipa-578, University of Toronto, Department of Economics.
- Rahul Deb & Mallesh M. Pai & Maher Said, 2018. "Evaluating Strategic Forecasters," Working Papers 18-23, New York University, Leonard N. Stern School of Business, Department of Economics.
- Rahul Deb & Mallesh M. Pai & Maher Said, 2017. "Evaluating Strategic Forecasters," Working Papers 17-02, New York University, Leonard N. Stern School of Business, Department of Economics.
- Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023.
"On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2022. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," NBER Working Papers 29635, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone In?ation and Real Interest Rates," PIER Working Paper Archive 21-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Rebonato, Riccardo & Ronzani, Riccardo, 2021. "Is convexity efficiently priced? Evidence from international swap markets," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 392-413.
- Jiun-Hua Su, 2019. "Model Selection in Utility-Maximizing Binary Prediction," Papers 1903.00716, arXiv.org, revised Jul 2020.
- Algieri, Bernardina & Iania, Leonardo & Leccadito, Arturo & Meloni, Giulia, 2024.
"Message in a bottle: Forecasting wine prices,"
Journal of Wine Economics, Cambridge University Press, vol. 19(1), pages 64-91, February.
- Algieri, Bernardina & Iania, Leonardo & Leccadito, Arturo & Meloni, Giulia, 2023. "Message in a Bottle: Forecasting wine prices," LIDAM Discussion Papers LFIN 2023004, Université catholique de Louvain, Louvain Finance (LFIN).
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"Econometrics of machine learning methods in economic forecasting,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273,
Edward Elgar Publishing.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2023. "Econometrics of Machine Learning Methods in Economic Forecasting," Papers 2308.10993, arXiv.org.
- Moramarco, Graziano, 2024.
"Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 777-795.
- Graziano Moramarco, 2021. "Financial-cycle ratios and medium-term predictions of GDP: Evidence from the United States," Papers 2111.00822, arXiv.org, revised Jan 2024.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Marcin Dec, 2021. "From point through density valuation to individual risk assessment in the discounted cash flows method," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5621-5635, October.
- Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021.
"Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors,"
Energy Economics, Elsevier, vol. 96(C).
- Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2019. "Modeling, Forecasting, and Nowcasting U.S. CO2 Emissions Using Many Macroeconomic Predictors," CREATES Research Papers 2019-21, Department of Economics and Business Economics, Aarhus University.
- Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Yin, Anwen, 2020. "Equity premium prediction and optimal portfolio decision with Bagging," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
- Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
- Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
- Anna Borucka, 2023. "Seasonal Methods of Demand Forecasting in the Supply Chain as Support for the Company’s Sustainable Growth," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
- Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020.
"Robust Forecasting,"
Papers
2011.03153, arXiv.org, revised Dec 2020.
- Timothy Christensen & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Robust Forecasting," PIER Working Paper Archive 20-038, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Chen, Li & Gao, Jiti & Vahid, Farshid, 2022.
"Global temperatures and greenhouse gases: A common features approach,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 240-254.
- Li Chen & Jiti Gao & Farshid Vahid, 2019. "Global temperatures and greenhouse gases - a common features approach," Working Papers 2019-07-15, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Li Chen & Jiti Gao & Farshid Vahid, 2019. "Global Temperatures and Greenhouse Gases: A Common Features Approach," Monash Econometrics and Business Statistics Working Papers 23/19, Monash University, Department of Econometrics and Business Statistics.
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Zhu, Yinchu & Timmermann, Allan, 2022. "Conditional rotation between forecasting models," Journal of Econometrics, Elsevier, vol. 231(2), pages 329-347.
- Timmermann, Allan & Zhu, Yinchu, 2021. "Conditional Rotation Between Forecasting Models," CEPR Discussion Papers 15917, C.E.P.R. Discussion Papers.
- G. Kontogeorgos & K. Lambrias, 2022. "Evaluating the Eurosystem/ECB staff macroeconomic projections: The first 20 years," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 213-229, March.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Dungey, Mardi & Islam, Raisul & Volkov, Vladimir, 2020.
"Crisis transmission: Visualizing vulnerability,"
Pacific-Basin Finance Journal, Elsevier, vol. 59(C).
- Dungey, Mardi & Islam, Raisul & Volkov, Vladimir, 2019. "Crisis transmission: visualizing vulnerability," Working Papers 2019-07, University of Tasmania, Tasmanian School of Business and Economics.
- Hasumi, Ryo & Iiboshi, Hirokuni & Matsumae, Tatsuyoshi & Nakamura, Daisuke, 2019. "Does a financial accelerator improve forecasts during financial crises? Evidence from Japan with prediction-pooling methods," Journal of Asian Economics, Elsevier, vol. 60(C), pages 45-68.
- Islam, Raisul & Volkov, Vladimir, 2020. "Calm before the storm: an early warning approach before and during the COVID-19 crisis," Working Papers 2020-09, University of Tasmania, Tasmanian School of Business and Economics.
- Su, Jiun-Hua, 2021. "Model selection in utility-maximizing binary prediction," Journal of Econometrics, Elsevier, vol. 223(1), pages 96-124.
- Graziano Moramarco, 2021. "Regime-Switching Density Forecasts Using Economists' Scenarios," Papers 2110.13761, arXiv.org, revised Feb 2024.
- Marta Boczoń & Jean-François Richard, 2020. "Balanced Growth Approach to Tracking Recessions," Econometrics, MDPI, vol. 8(2), pages 1-35, April.
- Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
- Kieran Mc Morrow & Werner Roeger & Valerie Vandermeulen, 2017. "Evaluating Medium Term Forecasting Methods and their Implications for EU Output Gap Calculations," European Economy - Discussion Papers 070, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
- Qin Zhang & He Ni & Hao Xu, 2023. "Forecasting models for the Chinese macroeconomy in a data‐rich environment: Evidence from large dimensional approximate factor models with mixed‐frequency data," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 719-767, March.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Gabe J. Bondt, 2019. "A PMI-Based Real GDP Tracker for the Euro Area," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 15(2), pages 147-170, December.
- Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
- Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
- Li, Jiang-Cheng & Leng, Na & Zhong, Guang-Yan & Wei, Yu & Peng, Jia-Sheng, 2020. "Safe marginal time of crude oil price via escape problem of econophysics," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
- Kothari, Pratik & O’Doherty, Michael S., 2023. "Job postings and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 64(C).
- Procasky, William J. & Yin, Anwen, 2023. "The impact of COVID-19 on the relative market efficiency and forecasting ability of credit derivative and equity markets," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.
- Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
- Kaiji Motegi & Xiaojing Cai & Shigeyuki Hamori & Haifeng Xu, 2020. "Moving average threshold heterogeneous autoregressive (MAT‐HAR) models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1035-1042, November.
- Adalberto Ospino Castro & Carlos Robles-Algar n & Rafael Pe a Gallardo, 2019. "Analysis of Energy Management and Financial Planning in the Implementation of PV Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 1-11.
- Anwen Yin, 2021. "Forecasting the Market Equity Premium: Does Nonlinearity Matter?," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(5), pages 1-9, May.
- Iania, Leonardo & Algieri, Bernardina & Leccadito, Arturo, 2022. "Forecasting total energy’s CO2 emissions," LIDAM Discussion Papers LFIN 2022003, Université catholique de Louvain, Louvain Finance (LFIN).
- Bennedsen, Mikkel & Lunde, Asger & Shephard, Neil & Veraart, Almut E.D., 2023. "Inference and forecasting for continuous-time integer-valued trawl processes," Journal of Econometrics, Elsevier, vol. 236(2).
- James Lightwood & Steve Anderson & Stanton A Glantz, 2020. "Predictive validation and forecasts of short-term changes in healthcare expenditure associated with changes in smoking behavior in the United States," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
- Juan R. Hernández, 2024. "Covered interest parity: a forecasting approach to estimate the neutral band," BIS Working Papers 1206, Bank for International Settlements.
- Marcin Dec, 2019. "From point through density valuation to individual risk assessment in the discounted cash flows method," GRAPE Working Papers 35, GRAPE Group for Research in Applied Economics.
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Arai, Natsuki, 2020. "Investigating the inefficiency of the CBO’s budgetary projections," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1290-1300.
- William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.