IDEAS home Printed from https://ideas.repec.org/r/boe/boeewp/323.html
   My bibliography  Save this item

Forecast combination and the Bank of England’s suite of statistical forecasting models

Citations

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Forecasting GDP in the presence of breaks: when is the past is a good guide to the future?
    by bankunderground in Bank Underground on 2015-08-20 11:30:00
  2. Forecasting GDP in the presence of breaks: when is the past a good guide to the future?
    by Guest Author in The Big Picture on 2015-09-01 14:00:11

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sigal Ribon, 2011. "The Effect of Monetary Policy on Inflation: A Factor Augmented VAR Approach using disaggregated data," Bank of Israel Working Papers 2011.12, Bank of Israel.
  2. Chris Florakis & Gianluigi Giorgioni & Alexandros Kostakis & Costas Milas, 2012. "The Impact of Stock Market Illiquidity on Real UK GDP Growth," Working Paper series 65_12, Rimini Centre for Economic Analysis.
  3. Bell, Venetia & Co, Lai Wah & Stone, Sophie & Wallis, gavin`, 2014. "Nowcasting UK GDP growth," Bank of England Quarterly Bulletin, Bank of England, vol. 54(1), pages 58-68.
  4. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
  5. Shahzad Ahmad & Farooq Pasha, 2015. "A Pragmatic Model for Monetary Policy Analysis I: The Case of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 1-42.
  6. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
  7. Selen Baser Andic & Fethi Ogunc, 2015. "Variable Selection for Inflation : A Pseudo Out-of-sample Approach," Working Papers 1506, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
  8. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
  9. Meri Papavangjeli, 2019. "Forecasting the Albanian short-term inflation through a Bayesian VAR model," IHEID Working Papers 16-2019, Economics Section, The Graduate Institute of International Studies, revised 09 Oct 2019.
  10. Eliana González & Luis F. Melo & Viviana Monroy & Brayan Rojas, 2009. "A Dynamic Factor Model For The Colombian Inflation," Borradores de Economia 5273, Banco de la Republica.
  11. Michael K. Andersson & Sune Karlsson, 2008. "Bayesian forecast combination for VAR models," Advances in Econometrics, in: Bayesian Econometrics, pages 501-524, Emerald Group Publishing Limited.
  12. Boneva, Lena & Fawcett, Nicholas & Masolo, Riccardo M. & Waldron, Matt, 2019. "Forecasting the UK economy: Alternative forecasting methodologies and the role of off-model information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 100-120.
  13. Fabio Bacchini & Cristina Brandimarte & Piero Crivelli & Roberta De Santis & Marco Fioramanti & Alessandro Girardi & Roberto Golinelli & Cecilia Jona-Lasinio & Massimo Mancini & Carmine Pappalardo & D, 2013. "Building the core of the Istat system of models for forecasting the Italian economy: MeMo-It," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(1), pages 17-45.
  14. Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015. "Evaluating the Performance of Inflation Forecasting Models of Pakistan," SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
  15. Goutsmedt, Aurélien & Sergi, Francesco & Cherrier, Beatrice & Claveau, François & Fontan, Clément & Acosta, Juan, 2023. "To change or not to change The evolution of forecasting models at the Bank of England," SocArXiv m2cet, Center for Open Science.
  16. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
  17. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
  18. Adam Jêdrzejczyk, 2012. "Inflation forecasting using dynamic factor analysis. SAS 4GL programming approach," Working Papers 63, Department of Applied Econometrics, Warsaw School of Economics.
  19. Georgios Papadopoulos & Dionysios Chionis & Nikolaos P. Rachaniotis, 2018. "Macro-financial linkages during tranquil and crisis periods: evidence from stressed economies," Risk Management, Palgrave Macmillan, vol. 20(2), pages 142-166, May.
  20. Reason Lesego Machete, 2011. "Early Warning with Calibrated and Sharper Probabilistic Forecasts," Papers 1112.6390, arXiv.org, revised Jan 2012.
  21. Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
  22. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
  23. Groen, Jan J.J. & Kapetanios, George & Price, Simon, 2009. "A real time evaluation of Bank of England forecasts of inflation and growth," International Journal of Forecasting, Elsevier, vol. 25(1), pages 74-80.
  24. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
  25. Christian Glocker & Serguei Kaniovski, 2022. "Macroeconometric forecasting using a cluster of dynamic factor models," Empirical Economics, Springer, vol. 63(1), pages 43-91, July.
  26. Fawcett, Nicholas & Koerber, Lena & Masolo, Riccardo & Waldron, Matthew, 2015. "Evaluating UK point and density forecasts from an estimated DSGE model: the role of off-model information over the financial crisis," Bank of England working papers 538, Bank of England.
  27. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
  28. Phella, Anthoulla & Gabriel, Vasco J. & Martins, Luis F., 2024. "Predicting tail risks and the evolution of temperatures," Energy Economics, Elsevier, vol. 131(C).
  29. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
  30. Fayyaz Hussain & Zafar Hayat, 2016. "Do Inflation Expectations Matter for Inflation Forecastability: Evidence from Pakistan," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(3), pages 211-225.
  31. Chris Bloor, 2009. "The use of statistical forecasting models at the Reserve Bank of New Zealand," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 72, pages 21-26, June.
  32. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2013. "Property Market Modelling and Forecasting: A Case for Simplicity," ERES eres2013_10, European Real Estate Society (ERES).
  33. Marie Diron & Benoit Mojon, 2008. "Are inflation targets good inflation forecasts?," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 32(Q II), pages 33-45.
  34. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
  35. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
  36. Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
  37. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
  38. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  39. Anthoulla Phella, 2020. "Forecasting With Factor-Augmented Quantile Autoregressions: A Model Averaging Approach," Papers 2010.12263, arXiv.org.
  40. Tony Chernis & Taylor Webley, 2022. "Nowcasting Canadian GDP with Density Combinations," Discussion Papers 2022-12, Bank of Canada.
  41. Diron, Marie & Mojon, Benoît, 2005. "Forecasting the central bank's inflation objective is a good rule of thumb," Working Paper Series 564, European Central Bank.
  42. Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
  43. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
  44. Juan Acosta & Beatrice Cherrier & François Claveau & Clément Fontan & Aurélien Goutsmedt & Francesco Sergi, 2023. "Six Decades of Economic Research at the Bank of England," Post-Print hal-03919394, HAL.
  45. Katerina Arnostova & David Havrlant & Luboš Rùžièka & Peter Tóth, 2011. "Short-Term Forecasting of Czech Quarterly GDP Using Monthly Indicators," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(6), pages 566-583, December.
  46. repec:wrk:wrkemf:02 is not listed on IDEAS
  47. Siliverstovs, Boriss, 2017. "Dissecting models' forecasting performance," Economic Modelling, Elsevier, vol. 67(C), pages 294-299.
  48. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05r, Department of Economics, University of Birmingham.
  49. Anh Dinh Minh Nguyen, 2017. "U.K. Monetary Policy under Inflation Targeting," Bank of Lithuania Working Paper Series 41, Bank of Lithuania.
  50. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
  51. Byron Botha & Geordie Reid & Tim Olds & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African GDP using a suite of statistical models," Working Papers 11001, South African Reserve Bank.
  52. Li, Z. & Hurn, A.S. & Clements, A.E., 2017. "Forecasting quantiles of day-ahead electricity load," Energy Economics, Elsevier, vol. 67(C), pages 60-71.
  53. Hyun Hak Kim, 2013. "Forecasting Macroeconomic Variables Using Data Dimension Reduction Methods: The Case of Korea," Working Papers 2013-26, Economic Research Institute, Bank of Korea.
  54. Kurmaş Akdoğan, 2015. "Asymmetric Behaviour of Inflation around the Target in Inflation-Targeting Countries," Scottish Journal of Political Economy, Scottish Economic Society, vol. 62(5), pages 486-504, November.
  55. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
  56. Arora Siddharth & Little Max A. & McSharry Patrick E., 2013. "Nonlinear and nonparametric modeling approaches for probabilistic forecasting of the US gross national product," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 395-420, September.
  57. Domit, Sílvia & Monti, Francesca & Sokol, Andrej, 2019. "Forecasting the UK economy with a medium-scale Bayesian VAR," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1669-1678.
  58. Altavilla, Carlo & Ciccarelli, Matteo, 2010. "Evaluating the effect of monetary policy on unemployment with alternative inflation forecasts," Economic Modelling, Elsevier, vol. 27(1), pages 237-253, January.
  59. Florackis, Chris & Giorgioni, Gianluigi & Kostakis, Alexandros & Milas, Costas, 2014. "On stock market illiquidity and real-time GDP growth," Journal of International Money and Finance, Elsevier, vol. 44(C), pages 210-229.
  60. Davor Kunovac, 2007. "Factor Model Forecasting of Inflation in Croatia," Financial Theory and Practice, Institute of Public Finance, vol. 31(4), pages 371-393.
  61. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).
  62. Byron Botha & Tim Olds & Geordie Reid & Daan Steenkamp & Rossouw van Jaarsveld, 2021. "Nowcasting South African gross domestic product using a suite of statistical models," South African Journal of Economics, Economic Society of South Africa, vol. 89(4), pages 526-554, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.