My bibliography
Save this item
Machine learning explainability in finance: an application to default risk analysis
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
- Yili Chen & Congdong Li & Han Wang, 2022. "Big Data and Predictive Analytics for Business Intelligence: A Bibliographic Study (2000–2021)," Forecasting, MDPI, vol. 4(4), pages 1-20, September.
- Kumar, Rishabh & Koshiyama, Adriano & da Costa, Kleyton & Kingsman, Nigel & Tewarrie, Marvin & Kazim, Emre & Roy, Arunita & Treleaven, Philip & Lovell, Zac, 2023. "Deep learning model fragility and implications for financial stability and regulation," Bank of England working papers 1038, Bank of England.
- Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
- Giudici, Paolo & Raffinetti, Emanuela, 2023. "SAFE Artificial Intelligence in finance," Finance Research Letters, Elsevier, vol. 56(C).
- Tiago E. Pratas & Filipe R. Ramos & Lihki Rubio, 2023. "Forecasting bitcoin volatility: exploring the potential of deep learning," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(2), pages 285-305, June.
- Paraná, Edemilson, 2024. "AI as financial infrastructure?," SocArXiv ub92z, Center for Open Science.
- Wei Jie Yeo & Wihan van der Heever & Rui Mao & Erik Cambria & Ranjan Satapathy & Gianmarco Mengaldo, 2023. "A Comprehensive Review on Financial Explainable AI," Papers 2309.11960, arXiv.org.
- Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
- Osama Wagdi & Yasmeen Tarek, 2022. "The Integration of Big Data and Artificial Neural Networks for Enhancing Credit Risk Scoring in Emerging Markets: Evidence from Egypt," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 14(2), pages 1-32, February.
- Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020.
"Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds,"
LEO Working Papers / DR LEO
2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
- Elena Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2021. "Machine Learning or Econometrics for Credit Scoring: Let's Get the Best of Both Worlds," Working Papers hal-02507499, HAL.
- Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
- Dyakonova, Ludmila & Konstantinov, Alexey, 2024. "Approaches to risk analysis in the financial sector based on machine learning and artificial intelligence methods," MPRA Paper 122941, University Library of Munich, Germany.
- Nicola Branzoli & Ilaria Supino, 2020. "FinTech credit: a critical review of empirical research," Questioni di Economia e Finanza (Occasional Papers) 549, Bank of Italy, Economic Research and International Relations Area.
- Zhiyu Cao & Zihan Chen & Prerna Mishra & Hamed Amini & Zachary Feinstein, 2023. "Modeling Inverse Demand Function with Explainable Dual Neural Networks," Papers 2307.14322, arXiv.org, revised Oct 2023.
- Johann Pfitzinger, 2021. "An Interpretable Neural Network for Parameter Inference," Papers 2106.05536, arXiv.org.
- Starosta, Wojciech, 2021. "Loss given default decomposition using mixture distributions of in-default events," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1187-1199.
- Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
- Susanna Levantesi & Giulia Zacchia, 2021. "Machine Learning and Financial Literacy: An Exploration of Factors Influencing Financial Knowledge in Italy," JRFM, MDPI, vol. 14(3), pages 1-21, March.
- Giudici, Paolo & Gramegna, Alex & Raffinetti, Emanuela, 2023. "Machine Learning Classification Model Comparison," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
- Georges, Christophre & Pereira, Javier, 2021. "Market stability with machine learning agents," Journal of Economic Dynamics and Control, Elsevier, vol. 122(C).
- Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.
- Lu, Xuefei & Calabrese, Raffaella, 2023. "The Cohort Shapley value to measure fairness in financing small and medium enterprises in the UK," Finance Research Letters, Elsevier, vol. 58(PC).
- Branka Hadji Misheva & Joerg Osterrieder & Ali Hirsa & Onkar Kulkarni & Stephen Fung Lin, 2021. "Explainable AI in Credit Risk Management," Papers 2103.00949, arXiv.org.
- Mustafa, Andy Ali & Lin, Ching-Yang & Kakinaka, Makoto, 2022. "Detecting market pattern changes: A machine learning approach," Finance Research Letters, Elsevier, vol. 47(PA).
- Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
- Paraná, Edemilson, 2024. "AI as financial infrastructure?," SocArXiv ub92z_v1, Center for Open Science.
- Ishan S. Kapoor & Sunint Bindra & Monika Bhatia, 2023. "Machine Learning in Accounting & Finance: Architecture, Scope & Challenges," International Journal of Business and Management, Canadian Center of Science and Education, vol. 17(5), pages 1-13, February.