My bibliography
Save this item
A scalable bootstrap for massive data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Batuhan Özkan & Coşkun Parim & Erhan Çene, 2023. "Predicting Countries’ Development Levels Using the Decision Tree and Random Forest Methods," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 87-104, June.
- Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
- Milica Maricic & Jose A. Egea & Veljko Jeremic, 2019. "A Hybrid Enhanced Scatter Search—Composite I-Distance Indicator (eSS-CIDI) Optimization Approach for Determining Weights Within Composite Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 497-537, July.
- Badruddoza, Syed & Amin, Modhurima & McCluskey, Jill, 2019. "Assessing the Importance of an Attribute in a Demand SystemStructural Model versus Machine Learning," Working Papers 2019-5, School of Economic Sciences, Washington State University.
- Vaughan, Gregory, 2020. "Efficient big data model selection with applications to fraud detection," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1116-1127.
- Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-53, February.
- Benjamin Lu & Jia Wan & Derek Ouyang & Jacob Goldin & Daniel E. Ho, 2024. "Quantifying the Uncertainty of Imputed Demographic Disparity Estimates: The Dual Bootstrap," NBER Chapters, in: Race, Ethnicity, and Economic Statistics for the 21st Century, National Bureau of Economic Research, Inc.
- Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
- Yang, Xinfeng & Yan, Xiaodong & Huang, Jian, 2019. "High-dimensional integrative analysis with homogeneity and sparsity recovery," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
- Dimitris N Politis, 2024. "Scalable subsampling: computation, aggregation and inference," Biometrika, Biometrika Trust, vol. 111(1), pages 347-354.
- Shi, Chengchun & Lu, Wenbin & Song, Rui, 2018. "A massive data framework for M-estimators with cubic-rate," LSE Research Online Documents on Economics 102111, London School of Economics and Political Science, LSE Library.
- Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
- Olhede, Sofia C. & Wolfe, Patrick J., 2018. "The future of statistics and data science," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 46-50.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Dean Eckles & Maurits Kaptein, 2019. "Bootstrap Thompson Sampling and Sequential Decision Problems in the Behavioral Sciences," SAGE Open, , vol. 9(2), pages 21582440198, June.
- Lee, JooChul & Wang, HaiYing & Schifano, Elizabeth D., 2020. "Online updating method to correct for measurement error in big data streams," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Changgee Chang & Zhiqi Bu & Qi Long, 2023. "CEDAR: communication efficient distributed analysis for regressions," Biometrics, The International Biometric Society, vol. 79(3), pages 2357-2369, September.
- Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
- Villoria, Nelson B. & Liu, Jing, 2018. "Using spatially explicit data to improve our understanding of land supply responses: An application to the cropland effects of global sustainable irrigation in the Americas," Land Use Policy, Elsevier, vol. 75(C), pages 411-419.
- Baihua He & Yanyan Liu & Guosheng Yin & Yuanshan Wu, 2023. "Model aggregation for doubly divided data with large size and large dimension," Computational Statistics, Springer, vol. 38(1), pages 509-529, March.
- Fang, Jianglin, 2023. "A split-and-conquer variable selection approach for high-dimensional general semiparametric models with massive data," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
- Beate Franke & Jean-FRANçois Plante & Ribana Roscher & En-shiun Annie Lee & Cathal Smyth & Armin Hatefi & Fuqi Chen & Einat Gil & Alexander Schwing & Alessandro Selvitella & Michael M. Hoffman & Roger, 2016. "Statistical Inference, Learning and Models in Big Data," International Statistical Review, International Statistical Institute, vol. 84(3), pages 371-389, December.
- Zhang, Likun & Castillo, Enrique del & Berglund, Andrew J. & Tingley, Martin P. & Govind, Nirmal, 2020. "Computing confidence intervals from massive data via penalized quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Ma, Xuejun & Wang, Shaochen & Zhou, Wang, 2021. "Testing multivariate quantile by empirical likelihood," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
- Mercè Crosas & Gary King & James Honaker & Latanya Sweeney, 2015. "Automating Open Science for Big Data," The ANNALS of the American Academy of Political and Social Science, , vol. 659(1), pages 260-273, May.