IDEAS home Printed from https://ideas.repec.org/r/bla/jorssb/v62y2000i4p773-786.html
   My bibliography  Save this item

Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
  2. Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
  3. Hua Yun Chen, 2007. "A Semiparametric Odds Ratio Model for Measuring Association," Biometrics, The International Biometric Society, vol. 63(2), pages 413-421, June.
  4. Chuan Hong & Yang Ning & Peng Wei & Ying Cao & Yong Chen, 2017. "A semiparametric model for vQTL mapping," Biometrics, The International Biometric Society, vol. 73(2), pages 571-581, June.
  5. Yang Ning & Yong Chen, 2015. "A Class of Pseudolikelihood Ratio Tests for Homogeneity in Exponential Tilt Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 504-517, June.
  6. Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
  7. Li Liu & Liming Xiang, 2014. "Semiparametric estimation in generalized linear mixed models with auxiliary covariates: A pairwise likelihood approach," Biometrics, The International Biometric Society, vol. 70(4), pages 910-919, December.
  8. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
  9. Marchese, Scott & Diao, Guoqing, 2017. "Density ratio model for multivariate outcomes," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 249-261.
  10. Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  11. Ning, Jing & Pak, Daewoo & Zhu, Hong & Qin, Jing, 2022. "Conditional independence test of failure and truncation times: Essential tool for method selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
  12. Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
  13. Hua Yun Chen & Daniel E. Rader & Mingyao Li, 2015. "Likelihood Inferences on Semiparametric Odds Ratio Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1125-1135, September.
  14. Fang Fang & Jiwei Zhao & S. Ejaz Ahmed & Annie Qu, 2021. "A weak‐signal‐assisted procedure for variable selection and statistical inference with an informative subsample," Biometrics, The International Biometric Society, vol. 77(3), pages 996-1010, September.
  15. Maomao Ding & Ruosha Li & Jin Qin & Jing Ning, 2023. "A double‐robust test for high‐dimensional gene coexpression networks conditioning on clinical information," Biometrics, The International Biometric Society, vol. 79(4), pages 3227-3238, December.
  16. Zhong Guan & Jing Qin, 2017. "Empirical likelihood method for non-ignorable missing data problems," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 113-135, January.
  17. repec:hum:wpaper:sfb649dp2015-016 is not listed on IDEAS
  18. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
  19. Rui Duan & Yang Ning & Shuang Wang & Bruce G. Lindsay & Raymond J. Carroll & Yong Chen, 2020. "A fast score test for generalized mixture models," Biometrics, The International Biometric Society, vol. 76(3), pages 811-820, September.
  20. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
  21. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
  22. Breunig, Christoph, 2017. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2017-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  23. repec:hum:wpaper:sfb649dp2017-007 is not listed on IDEAS
  24. Diao Guoqing & Ning Jing & qin jing, 2012. "Maximum Likelihood Estimation for Semiparametric Density Ratio Model," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, June.
  25. Chuan Hong & Yang Ning & Shuang Wang & Hao Wu & Raymond J. Carroll & Yong Chen, 2017. "PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1393-1404, October.
  26. Breunig, Christoph, 2015. "Testing missing at random using instrumental variables," SFB 649 Discussion Papers 2015-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  27. Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.